What is the most accurate method used to estimate a persons body fat?

1. Naser KA, Gruber A, Thomson GA. The emerging pandemic of obesity and diabetes: are we doing enough to prevent a disaster? Int J Clin Pract. 2006;60(9):1093–1097. [PubMed] [Google Scholar]

2. Seidell JC. Obesity, insulin resistance and diabetes–a worldwide epidemic. Br J Nutr. 2000;83(Suppl 1):S5–S8. [PubMed] [Google Scholar]

3. Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9(5):367–377. [PMC free article] [PubMed] [Google Scholar]

4. Roche A. Anthropometry and ultrasound. In: Roche A, Heymsfield S, Lohman T, editors. Human body composition. Champaign, IL: Human Kinetics Press; 1996. pp. 167–189. [Google Scholar]

5. Chumlea WM, Guo SS. Assessment and prevalence of obesity: application of new methods to a major problem. Endocrine. 2000;13(2):135–142. [PubMed] [Google Scholar]

6. Heymsfield SB, Lohman T, Wang Z, Going SB. Human body composition. Champaign, IL: Human Kinetics Press; 2005. [Google Scholar]

7. Roche AF, Heymsfield SB, Lohman TG. Human body composition. Champaign, IL: Human Kinetics Press; 1996. [Google Scholar]

8. Lohman TG. Champaign, IL: Human Kinetics Publishers; 1992. Advances in body composition assessment. [Google Scholar]

9. Moore FD. The body cell mass and its supporting environment. London: W.B. Saunders Company; 1963. [Google Scholar]

10. Frisard MI, Greenway FL, Delany JP. Comparison of methods to assess body composition changes during a period of weight loss. Obes Res. 2005;13(5):845–854. [PubMed] [Google Scholar]

11. Lohman T, Martorell R, Roche AF. Anthropometric standardization reference manual. Champaign, IL: Human Kinetics Books; 1988. [Google Scholar]

12. de Onis M, Onyango AW, Van den Broeck J, Chumlea WC, Martorell R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr Bull. 2004;25(1 Suppl):S27–S36. [PubMed] [Google Scholar]

13. Kuczmarski RJ, Chumlea WC. Third National Health and Nutrition Examination Survery (NHANESIII) antropometric procedures video. J Gerontol. 1997;37 [Google Scholar]

14. Chumlea WC, Guo SS, Steinbaugh ML. The prediction of stature from knee height for black and white adults and children, with application to the mobility-impaired. J Am Diet Assoc. 1994;94(2):1385–1388. [PubMed] [Google Scholar]

15. Chumlea WC, Guo SS, Wholihan K, Cockram D, Kuczmarski RJ, Johnson CL. Stature prediction equations for elderly non-Hispanic white, non-Hispanic black, and Mexican American persons developed from NHANES III data. J Am Diet Assoc. 1998;98(2):137–142. [PubMed] [Google Scholar]

16. WHO. Physical status: the use and interpretation of anthropometry. Geneva: WHO; 1995. [PubMed] [Google Scholar]

17. WHO. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization Programme of Nutr; 1998. 6-3-1997. [Google Scholar]

18. Chumlea WM, Guo S. Assessment and prevalence of obesity: application of new methods to a major problem. Endocrine. 2000;13(2):135–142. [PubMed] [Google Scholar]

19. Sun S, Wu W, Chumlea WC, Roche AF. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76(3):653–658. [PubMed] [Google Scholar]

20. Guo SS, Huang C, Maynard LM, Demerath E, Towne B, Chumlea WC, Siervogel RM. Body mass index during childhood, adolescence, and young adulthood in relation to adult overweight and adiposity: the Fels Longitudinal Study. Int J Obes Relat Metab Disord. 2000;24(12):1628–1635. [PubMed] [Google Scholar]

21. Smith SR, Lovejoy JC, Greenway F, Ryan D, deJonge L, de la Bretonne J, Volafova J, Bray GA. Contributions of total body fat, abdominal subcutaneous adipose tissue compartments, and visceral adipose tissue to the metabolic complications of obesity. Metabolism. 2001;50(4):425–435. [PubMed] [Google Scholar]

22. Pouliot MC, Despres JP, Lemieux S, Moorjani S, Bouchard C, Tremblay A, Nadeau A, Lupien PJ. Waist circumference and abdominal sagittal diameter: best simple anthropometric indexes of abdominal visceral adipose tissue accumulation and related cardiovascular risk in men and women. Am J Cardiol. 1994;73(7):460–468. [PubMed] [Google Scholar]

23. Després JP, Prud'homme D, Pouliot MC, Tremblay A, Bouchard C. Estimation of deep abdominal adipose-tissue accumulation from simple anthropometric measurements in men. Am J Clin Nutr. 1991;54(3):471–477. [PubMed] [Google Scholar]

24. Ziegler EE, Filer LJ Jr, editors. Bray obesity. Present knowledge in nutrition. 7th ed. Washington, DC: International Life Sciences Institute; 1994. pp. 19–32. [Google Scholar]

25. Nicklas BJ, Penninx BW, Cesari M, Kritchevsky SB, Newman AB, Kanaya AM, Pahor M, Jingzhong D, Harris TB. Health, Aging and Body Composition Study. Association of visceral adipose tissue with incident myocardial infarction in older men and women: the Health, Aging and Body Composition Study. Am J Epidemiol. 2004;160(8):741–749. [PubMed] [Google Scholar]

26. Okosun IS, Chandra KM, Boev A, Boltri JM, Choi ST, Parish DC, Dever GE. Abdominal adiposity in U.S. adults: prevalence and trends, 1960-2000. Prev Med. 2004;39(1):197–206. [PubMed] [Google Scholar]

27. Chumlea WC, Roche AF, Webb P. Body size, subcutaneous fatness and total body fat in older adults. Int J Obes. Relat Metab Disord. 1984;8(4):311–317. [PubMed] [Google Scholar]

28. Chumlea WC, Baumgartner RN, Garry PJ, Rhyne RL, Nicholson C, Wayne S. Fat distribution and blood lipids in a sample of healthy elderly people. Int J Obes. Relat Metab Disord. 1992;16(2):125–133. [PubMed] [Google Scholar]

29. Seidell JC, Oosterlee A, Thijssen MA, Burema J, Deurenberg P, Hautvast JG, Ruijs JH. Assessment of intra-abdominal and subcutaneous abdominal fat: relation between anthropometry and computed tomography. Am J Clin Nutr. 1987;45(1):7–13. [PubMed] [Google Scholar]

30. Fujimoto WY, Newell Morris LL, Grote M, Bergstrom RW, Shuman WP. Visceral fat obesity and morbidity: NIDDM and atherogenic risk in Japanese American men and women. Int J Obes. 1991;15(Suppl 2):41–44. [PubMed] [Google Scholar]

31. Malina RM, Bouchard C. Fat distribution during growth and later health outcomes. New York: Wiley-Liss; 1988. Subcutaneous fat distribution during growth; p. 68. [Google Scholar]

32. Brambilla P, Manzoni P, Sironi S, Simone P, Del Maschio A, di Natale B, Chiumello G. Peripheral and abdominal adiposity in childhood obesity. Int J Obes. Relat Metab Disord. 1994;18(12):795–800. [PubMed] [Google Scholar]

33. Roche AF, Siervogel RM, Chumlea WC, Webb P. Grading body fatness from limited anthropometric data. Am J Clin Nutr. 1981;34(12):2831–2838. [PubMed] [Google Scholar]

34. Chumlea WC, Guo S. Bioelectrical impedance and body composition: present status and future direction–reply. Nutr Rev. 1994;52:323–325. [PubMed] [Google Scholar]

35. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810–817. [PubMed] [Google Scholar]

36. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance for body composition. In: Pandolf KB, editor. Exercise and sports sciences reviews. New York: MacMillan; 1990. pp. 193–224. [PubMed] [Google Scholar]

37. Chumlea WC, Sun SS. Bioelectrical impedance analysis. In: Heymsfield SB, Lohman TG, Wang Z, Going SB, editors. Human body composition. Champaign, IL: Human Kinetics Books; 2005. [Google Scholar]

38. Sun SS, Chumlea WC. Statistical methods for the development and testing of body composition prediction equations. In: Heymsfield SB, Lohman TG, editors. Human body composition. Champaign, IL: Human Kinetics Books; 2005. [Google Scholar]

39. Gray DS, Bray GA, Gemayel N, Kaplan K. Effect of obesity on bioelectrical impedance. Am J Clin Nutr. 1989;50(2):255–260. [PubMed] [Google Scholar]

40. Kushner RF, Kunigk A, Alspaugh M, Andronis PT, Leitch CA, Schoeller DA. Validation of bioelectrical impedance analysis as a measurement of change in body composition in obesity. Am J Clin Nutr. 1990;52(2):219–223. [PubMed] [Google Scholar]

41. Chumlea WC. Body composition assessment of obesity. In: Bray GA, Ryan DH, editors. Overweight and the metabolic syndrome: from bench to bedside. New York: Springer; 2006. pp. 23–35. [Google Scholar]

42. Forbes G. Growth, aging, nutrition, and activity. New York: Springer-Verlag; 1987. Human body composition. [Google Scholar]

43. Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, Kuczmarski RJ, Flegal KM, Johnson CL, Hubbard VS. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiological surveys. Am J Clin Nutr. 2003;77(2):331–340. [PubMed] [Google Scholar]

44. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, Lukaski HC, Friedl K, Hubbard VS. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26(12):1596–1609. [PubMed] [Google Scholar]

45. Siri W. Body composition from fluid spaces and density analysis of methods. In: Brozek J, Henshcel A, editors. Techniques for measuring body composition. Washington, DC: National Academy Press; 1961. pp. 223–244. [Google Scholar]

46. Chumlea WC, Schubert CM, Sun SS, Demerath E, Towne B, Siervogel RM. A review of body water status and the effects of age and body fatness in children and adults. J Nutr Health Aging. 2007;11(2):111–118. [PubMed] [Google Scholar]

47. Chumlea WC, Cockram DB, Dwyer JT, Han H, Kelly MP. Nutritional assessment in chronic kidney disease. In: Byham-Gray LD, Burrowes JD, Chertow GM, editors. Nutrition in kidney disease. Totowa, NJ: Humana Press; 2008. pp. 49–118. [Google Scholar]

48. Ellis K. Whole-body counting and neutron activation analysis. In: Roche A, Heymsfield S, Lohman T, editors. Human body composition. Champaign, IL: Human Kinetics Press; 1996. pp. 45–61. [Google Scholar]

49. Knight GS, Beddoe AH, Streat SJ, Hill GL. Body composition of two human cadavers by neutron activation and chemical analysis. Am J Physiol. 1986;250(2 Pt 1):E179–E185. [PubMed] [Google Scholar]

50. Haas VK, Allen JR, Kohn MR, Clarke SD, Zhang S, Briody JN, Gruca M, Madden S, Müller MJ, Gaskin KJ. Total body protein in healthy adolescent girls: validation of estimates derived from simpler measures with neutron activation analysis. Am J Clin Nutr. 2007;85(1):66–72. [PubMed] [Google Scholar]

51. Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113–140. [PubMed] [Google Scholar]

52. Guo SS, Chumlea WC, Roche AF, Siervogel RM. Age- and maturity-related changes in body composition during adolescence into adulthood: the Fels Longitudinal Study. Int J Obes Relat Metab Disord. 1997;21(12):1167–1175. [PubMed] [Google Scholar]

53. Dempster P, Aitkens S. A new air displacement method for the determination of body composition. Med Sci Sports Exerc. 1995;27(12):1692–1697. [PubMed] [Google Scholar]

54. McCrory MA, Gomez TD, Bernauer EM, Mole PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995;27(12):1686–1691. [PubMed] [Google Scholar]

55. Demerath EW, Guo SS, Chumlea WC, Towne B, Roche AF, Siervogel RM. Comparison of percent body fat estimates using air displacement plethysmography and hydrodensitometry in adults and children. Int J Obes Relat Metab Disord. 2002;26(3):389–397. [PubMed] [Google Scholar]

56. Roubenoff R, Kehayias JJ, Dawson-Hughes B, Heymsfield S. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a “gold standard” Am J Clin Nutr. 1993;58(5):589–591. [PubMed] [Google Scholar]

57. Kohrt WM. Body composition by DXA: tried and true? Med Sci Sports Exerc. 1995;27(10):1349–1353. [PubMed] [Google Scholar]

58. Guo SS, Wisemandle W, Tyleshevski FE, Roche AF, Chumlea WC, Siervogel RM, Specker B, Heubi J. Inter-machine and inter-method differences in body composition measures from dual energy X-ray absorptiometry. J Nutr Health Aging. 1997;1:29–38. [Google Scholar]

59. Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–734. [PubMed] [Google Scholar]

60. Williams JE, Wells JC, Wilson CM, Haroun D, Lucas A, Fewtrell MS. Evaluation of Lunar Prodigy dual-energy X-ray absorptiometry for assessing body composition in healthy persons and patients by comparison with the criterion 4-component model. Am J Clin Nutr. 2006;83(5):1047–1054. [PubMed] [Google Scholar]

61. Schoeller DA, Tylavsky FA, Baer DJ, Chumlea WC, Earthman CP, Fuerst T, Harris TB, Heymsfield SB, Horlick M, Lohman TG, Lukaski HC, Shepherd J, Siervogel RM. Borrud LG QDR 4500A dual-energy X-ray absorptiometer underestimates fat mass in comparison with criterion methods in adults. Am J Clin Nutr. 2005;81(5):1018–1025. [PubMed] [Google Scholar]

62. Goodpaster BH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci. 2000;904:18–24. [PubMed] [Google Scholar]

63. Piekarski J, Goldberg HI, Royal SA, Axel L, Moss AA. Difference between liver and spleen CT numbers in the normal adult: its usefulness in predicting the presence of diffuse liver disease. Radiology. 1980;137(3):727–729. [PubMed] [Google Scholar]

64. Jocken JW, Blaak EE. Catecholamine-induced lipolysis in adipose tissue and skeletal muscle in obesity. Physiol Behav. 2008;94(2):219–230. [PubMed] [Google Scholar]