What is the difference between a grounded header linked list and a circular header link list?

Types of Linked List

A linked list is a linear data structure, in which the elements are not stored at contiguous memory locations. The elements in a linked list are linked using pointers. In simple words, a linked list consists of nodes where each node contains a data field and a reference(link) to the next node in the list.

Types Of Linked List

  • Singly Linked List: It is the simplest type of linked list in which every node contains some data and a pointer to the next node of the same data type. The node contains a pointer to the next node means that the node stores the address of the next node in the sequence. A single linked list allows traversal of data only in one way. Below is the image for the same:

What is the difference between a grounded header linked list and a circular header link list?

  • Structure of Singly Linked List:




// Node of a doubly linked list
class Node {
public:
int data;
// Pointer to next node in LL
Node* next;
};




// Node of a doubly linked list
static class Node
{
int data;
// Pointer to next node in LL
Node next;
};
//this code is contributed by shivani




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None




// Structure of Node
public class Node
{
public int data;
// Pointer to next node in LL
public Node next;
};
//this code is contributed by shivanisinghss2110




// Node of a doubly linked list
class Node
{
constructor()
{
this.data=0;
// Pointer to next node
this.next=null;
}
}
// This code is contributed by SHUBHAMSINGH10
  • Creation and Traversal of Singly Linked List:




// C++ program to illustrate creation
// and traversal of Singly Linked List
#include <bits/stdc++.h>
using namespace std;
// Structure of Node
class Node {
public:
int data;
Node* next;
};
// Function to print the content of
// linked list starting from the
// given node
void printList(Node* n)
{
// Iterate till n reaches NULL
while (n != NULL) {
// Print the data
cout << n->data << " ";
n = n->next;
}
}
// Driver Code
int main()
{
Node* head = NULL;
Node* second = NULL;
Node* third = NULL;
// Allocate 3 nodes in the heap
head = new Node();
second = new Node();
third = new Node();
// Assign data in first node
head->data = 1;
// Link first node with second
head->next = second;
// Assign data to second node
second->data = 2;
second->next = third;
// Assign data to third node
third->data = 3;
third->next = NULL;
printList(head);
return 0;
}




// Java program to illustrate
// creation and traversal of
// Singly Linked List
class GFG{
// Structure of Node
static class Node
{
int data;
Node next;
};
// Function to print the content of
// linked list starting from the
// given node
static void printList(Node n)
{
// Iterate till n reaches null
while (n != null)
{
// Print the data
System.out.print(n.data + " ");
n = n.next;
}
}
// Driver Code
public static void main(String[] args)
{
Node head = null;
Node second = null;
Node third = null;
// Allocate 3 nodes in
// the heap
head = new Node();
second = new Node();
third = new Node();
// Assign data in first
// node
head.data = 1;
// Link first node with
// second
head.next = second;
// Assign data to second
// node
second.data = 2;
second.next = third;
// Assign data to third
// node
third.data = 3;
third.next = null;
printList(head);
}
}
// This code is contributed by Princi Singh




// C# program to illustrate
// creation and traversal of
// Singly Linked List
using System;
class GFG{
// Structure of Node
public class Node
{
public int data;
public Node next;
};
// Function to print the content of
// linked list starting from the
// given node
static void printList(Node n)
{
// Iterate till n reaches null
while (n != null)
{
// Print the data
Console.Write(n.data + " ");
n = n.next;
}
}
// Driver Code
public static void Main(String[] args)
{
Node head = null;
Node second = null;
Node third = null;
// Allocate 3 nodes in
// the heap
head = new Node();
second = new Node();
third = new Node();
// Assign data in first
// node
head.data = 1;
// Link first node with
// second
head.next = second;
// Assign data to second
// node
second.data = 2;
second.next = third;
// Assign data to third
// node
third.data = 3;
third.next = null;
printList(head);
}
}
// This code is contributed by Amit Katiyar




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None
class LinkedList:
def __init__(self):
self.head = None
self.last_node = None
# function to add elements to linked list
def append(self, data):
# if linked list is empty then last_node will be none so in if condition head will be created
if self.last_node is None:
self.head = Node(data)
self.last_node = self.head
# adding node to the tail of linked list
else:
self.last_node.next = Node(data)
self.last_node = self.last_node.next
# function to print the content of linked list
def display(self):
current = self.head
# traversing the linked list
while current is not None:
# at each node printing its data
print(current.data, end=' ')
# giving current next node
current = current.next
print()
if __name__ == '__main__':
L = LinkedList()
# adding elements to the linked list
L.append(1)
L.append(2)
L.append(3)
L.append(4)
# displaying elements of linked list
L.display()




<script>
// JavaScript program to illustrate
// creation and traversal of
// Singly Linked List
// Structure of Node
class Node
{
constructor()
{
this.data=0;
this.next=null;
}
}
// Function to print the content of
// linked list starting from the
// given node
function printList(n)
{
// Iterate till n reaches null
while (n != null)
{
// Print the data
document.write(n.data + " ");
n = n.next;
}
}
// Driver Code
let head = null;
let second = null;
let third = null;
// Allocate 3 nodes in
// the heap
head = new Node();
second = new Node();
third = new Node();
// Assign data in first
// node
head.data = 1;
// Link first node with
// second
head.next = second;
// Assign data to second
// node
second.data = 2;
second.next = third;
// Assign data to third
// node
third.data = 3;
third.next = null;
printList(head);
// This code is contributed by unknown2108
</script>
Output 1 2 3
  • Doubly Linked List: A doubly linked list or a two-way linked list is a more complex type of linked list which contains a pointer to the next as well as the previous node in sequence, Therefore, it contains three parts are data, a pointer to the next node, and a pointer to the previous node. This would enable us to traverse the list in the backward direction as well. Below is the image for the same:

What is the difference between a grounded header linked list and a circular header link list?



  • Structure of Doubly Linked List:




// Node of a doubly linked list
struct Node {
int data;
// Pointer to next node in DLL
struct Node* next;
// Pointer to the previous node in DLL
struct Node* prev;
};




// Doubly linked list
// node
static class Node
{
int data;
// Pointer to next node in DLL
Node next;
// Pointer to the previous node in DLL
Node prev;
};
// This code is contributed by shivani




# structure of Node
class Node:
def __init__(self, data):
self.previous = None
self.data = data
self.next = None




// Doubly linked list
// node
public class Node
{
public int data;
// Pointer to next node in DLL
public Node next;
// Pointer to the previous node in DLL
public Node prev;
};
// This code is contributed by shivanisinghss2110
  • Creation and Traversal of Doubly Linked List:




// C++ program to illustrate creation
// and traversal of Doubly Linked List
#include <bits/stdc++.h>
using namespace std;
// Doubly linked list node
class Node {
public:
int data;
Node* next;
Node* prev;
};
// Function to push a new element in
// the Doubly Linked List
void push(Node** head_ref, int new_data)
{
// Allocate node
Node* new_node = new Node();
// Put in the data
new_node->data = new_data;
// Make next of new node as
// head and previous as NULL
new_node->next = (*head_ref);
new_node->prev = NULL;
// Change prev of head node to
// the new node
if ((*head_ref) != NULL)
(*head_ref)->prev = new_node;
// Move the head to point to
// the new node
(*head_ref) = new_node;
}
// Function to traverse the Doubly LL
// in the forward & backward direction
void printList(Node* node)
{
Node* last;
cout << "\nTraversal in forward"
<< " direction \n";
while (node != NULL) {
// Print the data
cout << " " << node->data << " ";
last = node;
node = node->next;
}
cout << "\nTraversal in reverse"
<< " direction \n";
while (last != NULL) {
// Print the data
cout << " " << last->data << " ";
last = last->prev;
}
}
// Driver Code
int main()
{
// Start with the empty list
Node* head = NULL;
// Insert 6.
// So linked list becomes 6->NULL
push(&head, 6);
// Insert 7 at the beginning. So
// linked list becomes 7->6->NULL
push(&head, 7);
// Insert 1 at the beginning. So
// linked list becomes 1->7->6->NULL
push(&head, 1);
cout << "Created DLL is: ";
printList(head);
return 0;
}




// Java program to illustrate
// creation and traversal of
// Doubly Linked List
import java.util.*;
class GFG{
// Doubly linked list
// node
static class Node
{
int data;
Node next;
Node prev;
};
static Node head_ref;
// Function to push a new
// element in the Doubly
// Linked List
static void push(int new_data)
{
// Allocate node
Node new_node = new Node();
// Put in the data
new_node.data = new_data;
// Make next of new node as
// head and previous as null
new_node.next = head_ref;
new_node.prev = null;
// Change prev of head node to
// the new node
if (head_ref != null)
head_ref.prev = new_node;
// Move the head to point to
// the new node
head_ref = new_node;
}
// Function to traverse the
// Doubly LL in the forward
// & backward direction
static void printList(Node node)
{
Node last = null;
System.out.print("\nTraversal in forward" +
" direction \n");
while (node != null)
{
// Print the data
System.out.print(" " + node.data +
" ");
last = node;
node = node.next;
}
System.out.print("\nTraversal in reverse" +
" direction \n");
while (last != null)
{
// Print the data
System.out.print(" " + last.data +
" ");
last = last.prev;
}
}
// Driver Code
public static void main(String[] args)
{
// Start with the empty list
head_ref = null;
// Insert 6.
// So linked list becomes
// 6.null
push(6);
// Insert 7 at the beginning.
// So linked list becomes
// 7.6.null
push(7);
// Insert 1 at the beginning.
// So linked list becomes
// 1.7.6.null
push(1);
System.out.print("Created DLL is: ");
printList(head_ref);
}
}
// This code is contributed by Princi Singh




# structure of Node
class Node:
def __init__(self, data):
self.previous = None
self.data = data
self.next = None
class DoublyLinkedList:
def __init__(self):
self.head = None
self.start_node = None
self.last_node = None
# function to add elements to doubly linked list
def append(self, data):
# is doubly linked list is empty then last_node will be none so in if condition head will be created
if self.last_node is None:
self.head = Node(data)
self.last_node = self.head
# adding node to the tail of doubly linked list
else:
new_node = Node(data)
self.last_node.next = new_node
new_node.previous = self.last_node
new_node.next = None
self.last_node = new_node
# function to printing and traversing the content of doubly linked list from left to right and right to left
def display(self, Type):
if Type == 'Left_To_Right':
current = self.head
while current is not None:
print(current.data, end=' ')
current = current.next
print()
else:
current = self.last_node
while current is not None:
print(current.data, end=' ')
current = current.previous
print()
if __name__ == '__main__':
L = DoublyLinkedList()
L.append(1)
L.append(2)
L.append(3)
L.append(4)
L.display('Left_To_Right')
L.display('Right_To_Left')




// C# program to illustrate
// creation and traversal of
// Doubly Linked List
using System;
class GFG{
// Doubly linked list
// node
public class Node
{
public int data;
public Node next;
public Node prev;
};
static Node head_ref;
// Function to push a new
// element in the Doubly
// Linked List
static void push(int new_data)
{
// Allocate node
Node new_node = new Node();
// Put in the data
new_node.data = new_data;
// Make next of new node as
// head and previous as null
new_node.next = head_ref;
new_node.prev = null;
// Change prev of head node to
// the new node
if (head_ref != null)
head_ref.prev = new_node;
// Move the head to point to
// the new node
head_ref = new_node;
}
// Function to traverse the
// Doubly LL in the forward
// & backward direction
static void printList(Node node)
{
Node last = null;
Console.Write("\nTraversal in forward" +
" direction \n");
while (node != null)
{
// Print the data
Console.Write(" " + node.data +
" ");
last = node;
node = node.next;
}
Console.Write("\nTraversal in reverse" +
" direction \n");
while (last != null)
{
// Print the data
Console.Write(" " + last.data +
" ");
last = last.prev;
}
}
// Driver Code
public static void Main(String[] args)
{
// Start with the empty list
head_ref = null;
// Insert 6.
// So linked list becomes
// 6.null
push(6);
// Insert 7 at the beginning.
// So linked list becomes
// 7.6.null
push(7);
// Insert 1 at the beginning.
// So linked list becomes
// 1.7.6.null
push(1);
Console.Write("Created DLL is: ");
printList(head_ref);
}
}
// This code is contributed by Amit Katiyar
Output Created DLL is: Traversal in forward direction 1 7 6 Traversal in reverse direction 6 7 1
  • Circular Linked List: A circular linked list is that in which the last node contains the pointer to the first node of the list. While traversing a circular liked list, we can begin at any node and traverse the list in any direction forward and backward until we reach the same node we started. Thus, a circular linked list has no beginning and no end. Below is the image for the same:

What is the difference between a grounded header linked list and a circular header link list?

  • Structure of Circular Linked List:




// Structure for a node
class Node {
public:
int data;
// Pointer to next node in CLL
Node* next;
};




// Structure for a node
static class Node
{
int data;
// Pointer to next node in CLL
Node next;
};
// This code is contributed by shivanisinghss2110




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None




// Structure for a node
public class Node
{
public int data;
// Pointer to next node in CLL
public Node next;
};
// This code is contributed by shivanisinghss2110
  • Creation and Traversal of Circular Linked List:




// C++ program to illustrate creation
// and traversal of Circular LL
#include <bits/stdc++.h>
using namespace std;
// Structure for a node
class Node {
public:
int data;
Node* next;
};
// Function to insert a node at the
// beginning of Circular LL
void push(Node** head_ref, int data)
{
Node* ptr1 = new Node();
Node* temp = *head_ref;
ptr1->data = data;
ptr1->next = *head_ref;
// If linked list is not NULL then
// set the next of last node
if (*head_ref != NULL) {
while (temp->next != *head_ref) {
temp = temp->next;
}
temp->next = ptr1;
}
// For the first node
else
ptr1->next = ptr1;
*head_ref = ptr1;
}
// Function to print nodes in the
// Circular Linked List
void printList(Node* head)
{
Node* temp = head;
if (head != NULL) {
do {
// Print the data
cout << temp->data << " ";
temp = temp->next;
} while (temp != head);
}
}
// Driver Code
int main()
{
// Initialize list as empty
Node* head = NULL;
// Created linked list will
// be 11->2->56->12
push(&head, 12);
push(&head, 56);
push(&head, 2);
push(&head, 11);
cout << "Contents of Circular"
<< " Linked List\n ";
printList(head);
return 0;
}




// Java program to illustrate
// creation and traversal of
// Circular LL
import java.util.*;
class GFG{
// Structure for a
// node
static class Node
{
int data;
Node next;
};
// Function to insert a node
// at the beginning of Circular
// LL
static Node push(Node head_ref,
int data)
{
Node ptr1 = new Node();
Node temp = head_ref;
ptr1.data = data;
ptr1.next = head_ref;
// If linked list is not
// null then set the next
// of last node
if (head_ref != null)
{
while (temp.next != head_ref)
{
temp = temp.next;
}
temp.next = ptr1;
}
// For the first node
else
ptr1.next = ptr1;
head_ref = ptr1;
return head_ref;
}
// Function to print nodes in
// the Circular Linked List
static void printList(Node head)
{
Node temp = head;
if (head != null)
{
do
{
// Print the data
System.out.print(temp.data + " ");
temp = temp.next;
} while (temp != head);
}
}
// Driver Code
public static void main(String[] args)
{
// Initialize list as empty
Node head = null;
// Created linked list will
// be 11.2.56.12
head = push(head, 12);
head = push(head, 56);
head = push(head, 2);
head = push(head, 11);
System.out.print("Contents of Circular" +
" Linked List\n ");
printList(head);
}
}
// This code is contributed by gauravrajput1




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None
class CircularLinkedList:
def __init__(self):
self.head = None
self.last_node = None
# function to add elements to circular linked list
def append(self, data):
# is circular linked list is empty then last_node will be none so in if condition head will be created
if self.last_node is None:
self.head = Node(data)
self.last_node = self.head
# adding node to the tail of circular linked list
else:
self.last_node.next = Node(data)
self.last_node = self.last_node.next
self.last_node.next = self.head
# function to print the content of circular linked list
def display(self):
current = self.head
while current is not None:
print(current.data, end=' ')
current = current.next
if current == self.head:
break
print()
if __name__ == '__main__':
L = CircularLinkedList()
L.append(1)
L.append(2)
L.append(3)
L.append(4)
L.display()




// C# program to illustrate
// creation and traversal of
// Circular LL
using System;
class GFG{
// Structure for a
// node
public class Node
{
public int data;
public Node next;
};
// Function to insert a node
// at the beginning of Circular
// LL
static Node push(Node head_ref,
int data)
{
Node ptr1 = new Node();
Node temp = head_ref;
ptr1.data = data;
ptr1.next = head_ref;
// If linked list is not
// null then set the next
// of last node
if (head_ref != null)
{
while (temp.next != head_ref)
{
temp = temp.next;
}
temp.next = ptr1;
}
// For the first node
else
ptr1.next = ptr1;
head_ref = ptr1;
return head_ref;
}
// Function to print nodes in
// the Circular Linked List
static void printList(Node head)
{
Node temp = head;
if (head != null)
{
do
{
// Print the data
Console.Write(temp.data + " ");
temp = temp.next;
} while (temp != head);
}
}
// Driver Code
public static void Main(String[] args)
{
// Initialize list as empty
Node head = null;
// Created linked list will
// be 11.2.56.12
head = push(head, 12);
head = push(head, 56);
head = push(head, 2);
head = push(head, 11);
Console.Write("Contents of Circular " +
"Linked List\n ");
printList(head);
}
}
// This code is contributed by gauravrajput1
Output Contents of Circular Linked List 11 2 56 12
  • Doubly Circular linked list: A Doubly Circular linked list or a circular two-way linked list is a more complex type of linked-list that contains a pointer to the next as well as the previous node in the sequence. The difference between the doubly linked and circular doubly list is the same as that between a singly linked list and a circular linked list. The circular doubly linked list does not contain null in the previous field of the first node. Below is the image for the same:

What is the difference between a grounded header linked list and a circular header link list?

  • Structure of Doubly Circular Linked List:




// Node of doubly circular linked list
struct Node {
int data;
// Pointer to next node in DCLL
struct Node* next;
// Pointer to the previous node in DCLL
struct Node* prev;
};




// Structure of a Node
static class Node
{
int data;
// Pointer to next node in DCLL
Node next;
// Pointer to the previous node in DCLL
Node prev;
};
//this code is contributed by shivanisinghss2110




# structure of Node
class Node:
def __init__(self, data):
self.previous = None
self.data = data
self.next = None




// Structure of a Node
public class Node
{
public int data;
// Pointer to next node in DCLL
public Node next;
// Pointer to the previous node in DCLL
public Node prev;
};
// This code is contributed by shivanisinghss2110
  • Creation and Traversal of Doubly Circular Linked List:




// C++ program to illustrate creation
// & traversal of Doubly Circular LL
#include <bits/stdc++.h>
using namespace std;
// Structure of a Node
struct Node {
int data;
struct Node* next;
struct Node* prev;
};
// Function to insert Node at
// the beginning of the List
void insertBegin(struct Node** start,
int value)
{
// If the list is empty
if (*start == NULL) {
struct Node* new_node = new Node;
new_node->data = value;
new_node->next
= new_node->prev = new_node;
*start = new_node;
return;
}
// Pointer points to last Node
struct Node* last = (*start)->prev;
struct Node* new_node = new Node;
// Inserting the data
new_node->data = value;
// Update the previous and
// next of new node
new_node->next = *start;
new_node->prev = last;
// Update next and previous
// pointers of start & last
last->next = (*start)->prev
= new_node;
// Update start pointer
*start = new_node;
}
// Function to traverse the circular
// doubly linked list
void display(struct Node* start)
{
struct Node* temp = start;
printf("\nTraversal in"
" forward direction \n");
while (temp->next != start) {
printf("%d ", temp->data);
temp = temp->next;
}
printf("%d ", temp->data);
printf("\nTraversal in "
"reverse direction \n");
Node* last = start->prev;
temp = last;
while (temp->prev != last) {
// Print the data
printf("%d ", temp->data);
temp = temp->prev;
}
printf("%d ", temp->data);
}
// Driver Code
int main()
{
// Start with the empty list
struct Node* start = NULL;
// Insert 5
// So linked list becomes 5->NULL
insertBegin(&start, 5);
// Insert 4 at the beginning
// So linked list becomes 4->5
insertBegin(&start, 4);
// Insert 7 at the end
// So linked list becomes 7->4->5
insertBegin(&start, 7);
printf("Created circular doubly"
" linked list is: ");
display(start);
return 0;
}




// Java program to illustrate creation
// & traversal of Doubly Circular LL
import java.util.*;
class GFG{
// Structure of a Node
static class Node
{
int data;
Node next;
Node prev;
};
// Start with the empty list
static Node start = null;
// Function to insert Node at
// the beginning of the List
static void insertBegin(
int value)
{
// If the list is empty
if (start == null)
{
Node new_node = new Node();
new_node.data = value;
new_node.next
= new_node.prev = new_node;
start = new_node;
return;
}
// Pointer points to last Node
Node last = (start).prev;
Node new_node = new Node();
// Inserting the data
new_node.data = value;
// Update the previous and
// next of new node
new_node.next = start;
new_node.prev = last;
// Update next and previous
// pointers of start & last
last.next = (start).prev
= new_node;
// Update start pointer
start = new_node;
}
// Function to traverse the circular
// doubly linked list
static void display()
{
Node temp = start;
System.out.printf("\nTraversal in"
+" forward direction \n");
while (temp.next != start)
{
System.out.printf("%d ", temp.data);
temp = temp.next;
}
System.out.printf("%d ", temp.data);
System.out.printf("\nTraversal in "
+ "reverse direction \n");
Node last = start.prev;
temp = last;
while (temp.prev != last)
{
// Print the data
System.out.printf("%d ", temp.data);
temp = temp.prev;
}
System.out.printf("%d ", temp.data);
}
// Driver Code
public static void main(String[] args)
{
// Insert 5
// So linked list becomes 5.null
insertBegin( 5);
// Insert 4 at the beginning
// So linked list becomes 4.5
insertBegin( 4);
// Insert 7 at the end
// So linked list becomes 7.4.5
insertBegin( 7);
System.out.printf("Created circular doubly"
+ " linked list is: ");
display();
}
}
// This code is contributed by shikhasingrajput




# structure of Node
class Node:
def __init__(self, data):
self.previous = None
self.data = data
self.next = None
class DoublyLinkedList:
def __init__(self):
self.head = None
self.start_node = None
self.last_node = None
# function to add elements to doubly linked list
def append(self, data):
# is doubly linked list is empty then last_node will be none so in if condition head will be created
if self.last_node is None:
self.head = Node(data)
self.last_node = self.head
# adding node to the tail of doubly linked list
else:
new_node = Node(data)
self.last_node.next = new_node
new_node.previous = self.last_node
new_node.next = self.head
self.last_node = new_node
# function to print the content of doubly linked list
def display(self, Type = 'Left_To_Right'):
if Type == 'Left_To_Right':
current = self.head
while current.next is not None:
print(current.data, end=' ')
current = current.next
if current == self.head:
break
print()
else:
current = self.last_node
while current.previous is not None:
print(current.data, end=' ')
current = current.previous
if current == self.last_node.next:
print(self.last_node.next.data, end=' ')
break
print()
if __name__ == '__main__':
L = DoublyLinkedList()
L.append(1)
L.append(2)
L.append(3)
L.append(4)
L.display('Left_To_Right')
L.display('Right_To_Left')




// C# program to illustrate creation
// & traversal of Doubly Circular LL
using System;
public class GFG{
// Structure of a Node
public
class Node
{
public
int data;
public
Node next;
public
Node prev;
};
// Start with the empty list
static Node start = null;
// Function to insert Node at
// the beginning of the List
static void insertBegin(
int value)
{
Node new_node = new Node();
// If the list is empty
if (start == null)
{
new_node.data = value;
new_node.next
= new_node.prev = new_node;
start = new_node;
return;
}
// Pointer points to last Node
Node last = (start).prev;
// Inserting the data
new_node.data = value;
// Update the previous and
// next of new node
new_node.next = start;
new_node.prev = last;
// Update next and previous
// pointers of start & last
last.next = (start).prev
= new_node;
// Update start pointer
start = new_node;
}
// Function to traverse the circular
// doubly linked list
static void display()
{
Node temp = start;
Console.Write("\nTraversal in"
+" forward direction \n");
while (temp.next != start)
{
Console.Write(temp.data + " ");
temp = temp.next;
}
Console.Write(temp.data + " ");
Console.Write("\nTraversal in "
+ "reverse direction \n");
Node last = start.prev;
temp = last;
while (temp.prev != last)
{
// Print the data
Console.Write( temp.data + " ");
temp = temp.prev;
}
Console.Write( temp.data + " ");
}
// Driver Code
public static void Main(String[] args)
{
// Insert 5
// So linked list becomes 5.null
insertBegin( 5);
// Insert 4 at the beginning
// So linked list becomes 4.5
insertBegin( 4);
// Insert 7 at the end
// So linked list becomes 7.4.5
insertBegin( 7);
Console.Write("Created circular doubly"
+ " linked list is: ");
display();
}
}
// This code is contributed by 29AjayKumar
Output Created circular doubly linked list is: Traversal in forward direction 7 4 5 Traversal in reverse direction 5 4 7
  • Header Linked List: A header linked list is a special type of linked list which contains a header node at the beginning of the list. So, in a header linked list START will not point to the first node of the list but START will contain the address of the header node. Below is the image for Grounded Header Linked List:

What is the difference between a grounded header linked list and a circular header link list?

  • Structure of Grounded Header Linked List:




// Structure of the list
struct link {
int info;
// Pointer to the next node
struct link* next;
};




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None




// Structure of the list
static class link {
int info;
// Pointer to the next node
link next;
};
// this code is contributed by shivanisinghss2110




// Structure of the list
public class link {
public int info;
// Pointer to the next node
public link next;
};
// this code is contributed by shivanisinghss2110
  • Creation and Traversal of Header Linked List:




// C++ program to illustrate creation
// and traversal of Header Linked List
#include <bits/stdc++.h>
// #include <malloc.h>
// #include <stdio.h>
// Structure of the list
struct link {
int info;
struct link* next;
};
// Empty List
struct link* start = NULL;
// Function to create header of the
// header linked list
struct link* create_header_list(int data)
{
// Create a new node
struct link *new_node, *node;
new_node = (struct link*)
malloc(sizeof(struct link));
new_node->info = data;
new_node->next = NULL;
// If it is the first node
if (start == NULL) {
// Initialize the start
start = (struct link*)
malloc(sizeof(struct link));
start->next = new_node;
}
else {
// Insert the node in the end
node = start;
while (node->next != NULL) {
node = node->next;
}
node->next = new_node;
}
return start;
}
// Function to display the
// header linked list
struct link* display()
{
struct link* node;
node = start;
node = node->next;
// Traverse until node is
// not NULL
while (node != NULL) {
// Print the data
printf("%d ", node->info);
node = node->next;
}
printf("\n");
// Return the start pointer
return start;
}
// Driver Code
int main()
{
// Create the list
create_header_list(11);
create_header_list(12);
create_header_list(13);
// Print the list
printf("List After inserting"
" 3 elements:\n");
display();
create_header_list(14);
create_header_list(15);
// Print the list
printf("List After inserting"
" 2 more elements:\n");
display();
return 0;
}




// Java program to illustrate creation
// and traversal of Header Linked List
class GFG{
// Structure of the list
static class link {
int info;
link next;
};
// Empty List
static link start = null;
// Function to create header of the
// header linked list
static link create_header_list(int data)
{
// Create a new node
link new_node, node;
new_node = new link();
new_node.info = data;
new_node.next = null;
// If it is the first node
if (start == null) {
// Initialize the start
start = new link();
start.next = new_node;
}
else {
// Insert the node in the end
node = start;
while (node.next != null) {
node = node.next;
}
node.next = new_node;
}
return start;
}
// Function to display the
// header linked list
static link display()
{
link node;
node = start;
node = node.next;
// Traverse until node is
// not null
while (node != null) {
// Print the data
System.out.printf("%d ", node.info);
node = node.next;
}
System.out.printf("\n");
// Return the start pointer
return start;
}
// Driver Code
public static void main(String[] args)
{
// Create the list
create_header_list(11);
create_header_list(12);
create_header_list(13);
// Print the list
System.out.printf("List After inserting"
+ " 3 elements:\n");
display();
create_header_list(14);
create_header_list(15);
// Print the list
System.out.printf("List After inserting"
+ " 2 more elements:\n");
display();
}
}
// This code is contributed by 29AjayKumar




# structure of Node
class Node:
def __init__(self, data):
self.data = data
self.next = None
class LinkedList:
def __init__(self):
self.head = Node(0)
self.last_node = self.head
# function to add elements to header linked list
def append(self, data):
self.last_node.next = Node(data)
self.last_node = self.last_node.next
# function to print the content of header linked list
def display(self):
current = self.head.next
# traversing the header linked list
while current is not None:
# at each node printing its data
print(current.data, end=' ')
# giving current next node
current = current.next
# print(self.head.data)
print()
if __name__ == '__main__':
L = LinkedList()
# adding elements to the header linked list
L.append(1)
L.append(2)
L.append(3)
L.append(4)
# displaying elements of header linked list
L.display()




// C# program to illustrate creation
// and traversal of Header Linked List
using System;
public class GFG{
// Structure of the list
public class link {
public int info;
public link next;
};
// Empty List
static link start = null;
// Function to create header of the
// header linked list
static link create_header_list(int data)
{
// Create a new node
link new_node, node;
new_node = new link();
new_node.info = data;
new_node.next = null;
// If it is the first node
if (start == null) {
// Initialize the start
start = new link();
start.next = new_node;
}
else {
// Insert the node in the end
node = start;
while (node.next != null) {
node = node.next;
}
node.next = new_node;
}
return start;
}
// Function to display the
// header linked list
static link display()
{
link node;
node = start;
node = node.next;
// Traverse until node is
// not null
while (node != null) {
// Print the data
Console.Write("{0} ", node.info);
node = node.next;
}
Console.Write("\n");
// Return the start pointer
return start;
}
// Driver Code
public static void Main(String[] args)
{
// Create the list
create_header_list(11);
create_header_list(12);
create_header_list(13);
// Print the list
Console.Write("List After inserting"
+ " 3 elements:\n");
display();
create_header_list(14);
create_header_list(15);
// Print the list
Console.Write("List After inserting"
+ " 2 more elements:\n");
display();
}
}
// This code is contributed by 29AjayKumar
Output List After inserting 3 elements: 11 12 13 List After inserting 2 more elements: 11 12 13 14 15

What is the difference between a grounded header linked list and a circular header link list?




Article Tags :
Data Structures
Linked List
circular linked list
doubly linked list
Linked Lists
Practice Tags :
Data Structures
Linked List
circular linked list

Grounded Header Linked List

In this type of Header Linked List, the last node of the list points to NULL or holds the reference to NULL Pointer. The head pointer points to the Header node of the list. If the there is no node to the next of head pointer or head.next equals NULL then we know that the Linked List is empty. The operations performed on the Header Linked List are same as Singly Linked List such as Insertion, Deletion, and Traversal of nodes. Let us understand this with an example:

Header Linked List

The above image shows a Grounded Header Linked List. We can see the Header Node at the beginning followed by the actual nodes of the list where the last node points to NULL. The header node maintains global information about the list. Firstly, we have to create Header Node first whose data field will be NULL or 0 initially. After that we can perform any operations on that linked list and store the global information about the linked list on the header node. Here, we store the count or Total no. of nodes present in the Linked List, the Maximum and Minimum value among all nodes in the list. So, in the above Linked List Total Nodes are 4 , Maximum Value is 99 and Minimum value is 5 which are present as fields in Header Node.

Header Linked List

A Header linked list is one more variant of linked list. In Header linked list, we have a special node present at the beginning of the linked list. This special node is used to store number of nodes present in the linked list. In other linked list variant, if we want to know the size of the linked list we use traversal method. But in Header linked list, the size of the linked list is stored in its header itself.

Data Structure - Circular Linked List


Advertisements

Previous Page
Next Page

Circular Linked List is a variation of Linked list in which the first element points to the last element and the last element points to the first element. Both Singly Linked List and Doubly Linked List can be made into a circular linked list.