Which network topology connected nodes with a ring of cable?

What is Topology?

Network topologies describe the methods in which all the elements of a network are mapped. The topology term refers to both the physical and logical layout of a network.

In this network topology tutorial, we will explain:

  • What is Topology?
  • Type of Network Topology
  • Point to Point
  • Bus Topology
  • Ring Topology
  • Star Topology
  • Mesh Topology
  • Tree Topology
  • Hybrid Topology
  • How to select a Network Topology?

Why is this relevant for C2G?

Our network cabling products - copper and fiber - provide the links between the nodes within the topology.

Overview

A network topology describes how computers, printers, and other devices (i.e. nodes) are connected to the network. The following topologies are most commonly used to build most networks.

Bus Topology

A bus topology exists when all of the nodes on the network are connected to a single cable. This single cable is commonly referred to as a backbone. Bus topology was used for early 10Base-2, ThinNet, and 10Base-5, ThickNet, coaxial cable Ethernet networks. In this topology messages sent from a node are broadcast to all nodes on the network. Only the intended recipient node accepts and processes the message. This type of network topology is relatively easy to install and inexpensive. This topology requires that both ends of the backbone cable be terminated. If the backbone is not terminated, then signal is likely to bounce back from the end of the cable causing data collisions and noise that may disrupt the network. The main drawbacks to this type of network topology are a limitation on the amount of computers that can be connected to the network, and the fact that only a single backbone cable is used to connect all of the nodes. Network using a bus topology are limited to only a few dozen computers. If the network exceeds this size performance, problems will likely result. If there is a failure in the backbone cable connecting all of the nodes, then the entire network will become unstable and potentially cease to function. This topology is not typically used in modern networks.

Which network topology connected nodes with a ring of cable?

Figure 5.17. Star Topology

Exam Warning

Remember that physical and logical topologies are related, but different. A logical ring can run via a physical ring, but there are exceptions. FDDI uses both a logical and physical ring, but Token Ring is a logical ring topology that runs on a physical star, for example. If you see the word “ring” on the exam, check the context to see if it is referring to physical ring, logical ring, or both.

Stars feature better fault tolerance: any single local cable cut or NIC failure affects one node only. Since each node is wired back to a central point, more cable is required as opposed to bus (where one cable run connects nodes to each other). This cost disadvantage is usually outweighed by the fault tolerance advantages.

View chapterPurchase book

Read full chapter

URL:https://www.sciencedirect.com/science/article/pii/B9780128024379000059

Types of Network Topology

The arrangement of a network that comprises nodes and connecting lines via sender and receiver is referred to as network topology. The various network topologies are:

Types of Network Topology Explained

Which network topology connected nodes with a ring of cable?

When building a computer network, you need to define which network topology you want to use. There are multiple types of network topologies used nowadays, each with its pros and cons. The topology you choose determines the optimal performance of your network, scalability options, ease of maintenance, and the costs of building the network. That’s why it is important to select the right network topology type.

This blog post covers types of network topology, their advantages, and their disadvantages. It also provides recommendations on which network topology to use in different scenarios. Practical examples of using a specific type of network topologies can help you understand when each topology can be applied. After reading this blog post, you should be able to select the needed topology and equipment to build your own network.