What is the bodys first line of defense against disease

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

1. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2014;16:27. doi: 10.1038/ni.3045. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

2. Quayle AJ. The innate and early immune response to pathogen challenge in the female genital tract and the pivotal role of epithelial cells. J Reprod Immunol. 2002;57(1):61–79. doi: 10.1016/S0165-0378(02)00019-0. [PubMed] [CrossRef] [Google Scholar]

3. Zasloff M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. J Am Soc Nephrol. 2007;18(11):2810–2816. doi: 10.1681/ASN.2007050611. [PubMed] [CrossRef] [Google Scholar]

4. Peterson LW, Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol. 2014;14:141–153. doi: 10.1038/nri3608. [PubMed] [CrossRef] [Google Scholar]

5. Günther J, Koy M, Berthold A, Schuberth HJ, Seyfert HM. Comparison of the pathogen species-specific immune response in udder derived cell types and their models. Vet Res. 2016;47(1):22. doi: 10.1186/s13567-016-0307-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

6. Pasparakis M, Haase I, Nestle FO. Mechanisms regulating skin immunity and inflammation. Nat Rev Immunol. 2014;14:289–301. doi: 10.1038/nri3646. [PubMed] [CrossRef] [Google Scholar]

7. Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–175. doi: 10.1111/j.1600-065X.2012.01146.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

8. McClure R, Massari P. TLR-dependent human mucosal epithelial cell responses to microbial pathogens. Front Immunol. 2014;5:386. doi: 10.3389/fimmu.2014.00386. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

9. Zheng NX, Wang Y, Hu DD, Yan L, Jiang YY. The role of pattern recognition receptors in the innate recognition of Candida albicans. Virulence. 2015;6(4):347–361. doi: 10.1080/21505594.2015.1014270. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

10. Pandey Surya, Kawai Taro, Akira Shizuo. Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harbor Perspectives in Biology. 2014;7(1):a016246. doi: 10.1101/cshperspect.a016246. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Hatai H, Lepelley A, Zeng W, Hayden MS, Ghosh S. Toll-like receptor 11 (TLR11) interacts with flagellin and profilin through disparate mechanisms. PLOS ONE. 2016;11(2):e0148987. doi: 10.1371/journal.pone.0148987. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

12. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005;280(7):5571–5580. doi: 10.1074/jbc.M410592200. [PubMed] [CrossRef] [Google Scholar]

13. Kim TH, Lee HK. Innate immune recognition of respiratory syncytial virus infection. BMB Rep. 2014;47(4):184–191. doi: 10.5483/BMBRep.2014.47.4.050. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Pott J, Stockinger S, Torow N, Smoczek A, Lindner C, McInerney G, Bäckhed F, Baumann U, Pabst O, Bleich A, Hornef MW. Age-dependent TLR3 expression of the intestinal epithelium contributes to rotavirus susceptibility. PLOS Pathogens. 2012;8(5):e1002670. doi: 10.1371/journal.ppat.1002670. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

15. Ioannidis I, McNally B, Willette M, Peeples ME, Chaussabel D, Durbin JE, Ramilo O, Mejias A, Flano E. Plasticity and virus specificity of the airway epithelial cell immune response during respiratory virus infection. J Virol. 2012;86(10):5422–5436. doi: 10.1128/JVI.06757-11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

16. Li Y, Liu MF, Zuo ZY, Liu J, Yu X, Guan Y, Zhan RH, Han QJ, Zhang J, Zhou RB, Sun R, Tian ZG, Zhang C. TLR9 regulates the NF-kappa B-NLRP3-IL-1 beta pathway negatively in salmonella-induced NKG2D-mediated intestinal inflammation. J Immunol. 2017;199(2):761–773. doi: 10.4049/jimmunol.1601416. [PubMed] [CrossRef] [Google Scholar]

17. Mayer S, Raulf MK, Lepenies B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol. 2017;147(2):223–237. doi: 10.1007/s00418-016-1523-7. [PubMed] [CrossRef] [Google Scholar]

18. Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Current Opinion in Immunology. 2015;32:21–27. doi: 10.1016/j.coi.2014.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

19. Netea MG, Joosten LAB, Latz E, Mills KHG, Natoli G, Stunnenberg HG, O’Neill LAJ, Xavier RJ. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

20. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41(6):898–908. doi: 10.1016/j.immuni.2014.12.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

21. Negroni A, Colantoni E, Vitali R, Palone F, Pierdomenico M, Costanzo M, Cesi V, Cucchiara S, Stronati L. NOD2 induces autophagy to control AIEC bacteria infectiveness in intestinal epithelial cells. Inflamm Res. 2016;65(10):803–813. doi: 10.1007/s00011-016-0964-8. [PubMed] [CrossRef] [Google Scholar]

22. Krokowski S, Mostowy S. Interactions between Shigella flexneri and the autophagy machinery. Front Cell Infect Microbiol. 2016;6:17. doi: 10.3389/fcimb.2016.00017. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Opitz B, Püschel A, Schmeck B, Hocke AC, Rosseau S, Hammerschmidt S, Schumann RR, Suttorp N, Hippenstiel S. Nucleotide-binding oligomerization domain proteins are innate immune receptors for internalized Streptococcus pneumoniae. J Biol Chem. 2004;279(35):36426–36432. doi: 10.1074/jbc.M403861200. [PubMed] [CrossRef] [Google Scholar]

24. Sharma D, Kanneganti TD. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213(6):617–629. doi: 10.1083/jcb.201602089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

25. Claes AK, Zhou JY, Philpott DJ. NOD-like receptors: guardians of intestinal mucosal barriers. Physiology. 2015;30(3):241–250. doi: 10.1152/physiol.00025.2014. [PubMed] [CrossRef] [Google Scholar]

26. Chen L, Wilson JE, Koenigsknecht MJ, Chou WC, Montgomery SA, Truax AD, Brickey WJ, Packey CD, Maharshak N, Matsushima GK, Plevy SE, Young VB, Sartor RB, Ting JP-Y. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18:541–551. doi: 10.1038/ni.3690. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Schoggins JW. Recent advances in antiviral interferon-stimulated gene biology. F1000Res. 2018;7:309. doi: 10.12688/f1000research.12450.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

28. Yu S, Gao N. Compartmentalizing intestinal epithelial cell Toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72(17):3343–3353. doi: 10.1007/s00018-015-1931-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

29. Weitnauer M, Mijosek V, Dalpke AH. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2015;9:287. doi: 10.1038/mi.2015.126. [PubMed] [CrossRef] [Google Scholar]

30. Petzl W, Zerbe H, Günther J, Yang W, Seyfert HM, Nürnberg G, Schuberth HJ. Escherichia coli, but not Staphylococcus aureus triggers an early increased expression of factors contributing to the innate immune defense in the udder of the cow. Vet Res. 2008;39(2):18. doi: 10.1051/vetres:2007057. [PubMed] [CrossRef] [Google Scholar]

31. Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol. 2014;24(6):360–369. doi: 10.1016/j.tcb.2013.12.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

32. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33(1):257–290. doi: 10.1146/annurev-immunol-032414-112240. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

33. Randow F, MacMicking JD, James LC. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science. 2013;340(6133):701–706. doi: 10.1126/science.1233028. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

34. Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12:168–179. doi: 10.1038/nri3151. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

35. Afonina IS, Zhong Z, Karin M, Beyaert R. Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol. 2017;18:861–869. doi: 10.1038/ni.3772. [PubMed] [CrossRef] [Google Scholar]

36. Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. Modulating inflammation through the negative regulation of NF-kappaB signaling. J Leukoc Biol. 2018;103:1131–1150. doi: 10.1002/JLB.3MIR0817-346RRR. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

37. Beeson PB. Tolerance to bacterial pyrogens: I. Factors influencing its development. J Exp Med. 1947;86(1):29–38. doi: 10.1084/jem.86.1.29. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

38. Gourbal B, Pinaud S, Beckers Gerold JM, Meer Jos WM, Conrath U, Netea MG. Innate immune memory: an evolutionary perspective. Immunol Rev. 2018;283(1):21–40. doi: 10.1111/imr.12647. [PubMed] [CrossRef] [Google Scholar]

39. Neagos J, Standiford TJ, Newstead MW, Zeng X, Huang SK, Ballinger MN. Epigenetic regulation of tolerance to Toll-like receptor ligands in alveolar epithelial cells. Am J Respir Cell Mol Biol. 2015;53(6):872–881. doi: 10.1165/rcmb.2015-0057OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

40. Günther J, Petzl W, Zerbe H, Schuberth H-J, Seyfert H-M. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells. Innate Immun. 2016;23(2):155–164. doi: 10.1177/1753425916681076. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

41. Rawlins EL, Hogan BLM. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Phys Lung Cell Mol Phys. 2008;295(1):L231–L234. [PMC free article] [PubMed] [Google Scholar]

42. Kopf M, Schneider C, Nobs SP. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol. 2014;16:36. doi: 10.1038/ni.3052. [PubMed] [CrossRef] [Google Scholar]

43. Schwayer C, Sikora M, Slovakova J, Kardos R, Heisenberg CP. Actin rings of power. Dev Cell. 2016;37(6):493–506. doi: 10.1016/j.devcel.2016.05.024. [PubMed] [CrossRef] [Google Scholar]

44. Duszyc K, Gomez GA, Schroder K, Sweet MJ, Yap AS. In life there is death: how epithelial tissue barriers are preserved despite the challenge of apoptosis. Tissue Barriers. 2017;5(4):e1345353. doi: 10.1080/21688370.2017.1345353. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

45. Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23:915–926. doi: 10.1038/cdd.2015.172. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

46. Arandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16:907–917. doi: 10.1038/ni.3253. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

47. Davies SP, Reynolds GM, Stamataki Z. Clearance of apoptotic cells by tissue epithelia: a putative role for hepatocytes in liver efferocytosis. Front Immunol. 2018;9:44. doi: 10.3389/fimmu.2018.00044. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

48. Birge RB, Boeltz S, Kumar S, Carlson J, Wanderley J, Calianese D, Barcinski M, Brekken RA, Huang X, Hutchins JT, Freimark B, Empig C, Mercer J, Schroit AJ, Schett G, Herrmann M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ. 2016;23:962–978. doi: 10.1038/cdd.2016.11. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

49. Henson PM. Cell removal: efferocytosis. Annu Rev Cell Dev Biol. 2017;33(1):127–144. doi: 10.1146/annurev-cellbio-111315-125315. [PubMed] [CrossRef] [Google Scholar]

50. Juncadella IJ, Kadl A, Sharma AK, Shim YM, Hochreiter-Hufford A, Borish L, Ravichandran KS. Apoptotic cell clearance by bronchial epithelial cells critically influences airway inflammation. Nature. 2012;493:547–551. doi: 10.1038/nature11714. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Han CZ, Juncadella IJ, Kinchen JM, Buckley MW, Klibanov AL, Dryden K, Onengut-Gumuscu S, Erdbrügger U, Turner SD, Shim YM, Tung KS, Ravichandran KS. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature. 2016;539:570–574. doi: 10.1038/nature20141. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

52. Chand HS, Woldegiorgis Z, Schwalm K, McDonald J, Tesfaigzi Y. Acute inflammation induces insulin-like growth factor-1 to mediate Bcl-2 and Muc5ac expression in airway epithelial cells. Am J Respir Cell Mol Biol. 2012;47(6):784–791. doi: 10.1165/rcmb.2012-0079OC. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

53. Blander JM. Death in the intestinal epithelium-basic biology and implications for inflammatory bowel disease. FEBS J. 2016;283(14):2720–2730. doi: 10.1111/febs.13771. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Lee CS, Penberthy KK, Wheeler KM, Juncadella IJ, Vandenabeele P, Lysiak JJ, Ravichandran KS. Boosting apoptotic cell clearance by colonic epithelial cells attenuates inflammation in-vivo. Immunity. 2016;44(4):807–820. doi: 10.1016/j.immuni.2016.02.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

55. Sandahl M, Hunter DM, Strunk KE, Earp HS, Cook RS. Epithelial cell-directed efferocytosis in the post-partum mammary gland is necessary for tissue homeostasis and future lactation. BMC Dev Biol. 2010;10(1):122. doi: 10.1186/1471-213X-10-122. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

56. Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 2015;17(3):173–183. doi: 10.1016/j.micinf.2015.01.004. [PubMed] [CrossRef] [Google Scholar]

57. Veiga E, Guttman JA, Bonazzi M, Boucrot E, Toledo-Arana A, Lin AE, Enninga J, Pizarro-Cerda J, Finlay BB, Kirchhausen T, Cossart P. Invasive and adherent bacterial pathogens co-opt host clathrin for infection. Cell Host Microbe. 2007;2(5):340–351. doi: 10.1016/j.chom.2007.10.001. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

58. Arias CF, Silva-Ayala D, Lopez S. Rotavirus entry: a deep journey into the cell with several exits. J Virol. 2015;89(2):890–893. doi: 10.1128/JVI.01787-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

59. Edinger T, Pohl M, Stertz S. Entry of influenza A virus: host factors and antiviral targets. J Gen Virol. 2014;95:263–277. doi: 10.1099/vir.0.059477-0. [PubMed] [CrossRef] [Google Scholar]

60. Croft CA, Culibrk L, Moore MM, Tebbutt SJ. Interactions of aspergillus fumigatus conidia with airway epithelial cells: a critical review. Front Microbiol. 2016;7:472. doi: 10.3389/fmicb.2016.00472. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

61. Eierhoff T, Bastian B, Thuenauer R, Madl J, Audfray A, Aigal S, Juillot S, Rydell GE, Müller S, de Bentzmann S, Imberty A, Fleck C, Römer W. A lipid zipper triggers bacterial invasion. Proc Natl Acad Sci. 2014;111:12895–12900. doi: 10.1073/pnas.1402637111. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

62. Pauwels AM, Trost M, Beyaert R, Hoffmann E. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 2017;38(6):407–422. doi: 10.1016/j.it.2017.03.006. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

63. Blanchette CD, Woo YH, Thomas C, Shen N, Sulchek TA, Hiddessen AL. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells. PLOS ONE. 2009;4(6):e6056. doi: 10.1371/journal.pone.0006056. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

64. Saftig P. Physiology of the lysosome. In: Mehta A, Beck M, Sunder-Plassmann G, editors. Fabry disease: perspectives from 5 years of FOS. Oxford: Oxford PharmaGenesis; 2006. [Google Scholar]

65. Schukken YH, Günther J, Fitzpatrick J, Fontaine MC, Goetze L, Holst O, Leigh J, Petzl W, Schuberth HJ, Sipka A, Smith DGE, Quesnell R, Watts J, Yancey R, Zerbe H, Gurjar A, Zadoks RN, Seyfert HM. Host-response patterns of intramammary infections in dairy cows. Vet Immunol Immunopathol. 2011;144(3–4):270–289. doi: 10.1016/j.vetimm.2011.08.022. [PubMed] [CrossRef] [Google Scholar]

66. Bauer I, Günther J, Wheeler TT, Engelmann S, Seyfert HM. Extracellular milieu grossly alters pathogen-specific immune response of mammary epithelial cells. BMC Vet Res. 2015;11(1):172. doi: 10.1186/s12917-015-0489-3. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

67. Günther J, Czabanska A, Bauer I, Leigh JA, Holst O, Seyfert HM. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages. Vet Res. 2016;47(1):13. doi: 10.1186/s13567-015-0287-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

68. Günther J, Petzl W, Bauer I, Ponsuksili S, Zerbe H, Schuberth HJ, Brunner RM, Seyfert HM. Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci Rep. 2017;7(1):4811. doi: 10.1038/s41598-017-05107-4. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

69. Tuchscherr L, Medina E, Hussain M, Völker W, Heitmann V, Niemann S, Holzinger D, Roth J, Proctor RA, Becker K, Peters G, Löffler B. Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med. 2011;3(3):129–141. doi: 10.1002/emmm.201000115. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

70. Watson RO, Galan JE. Campylobacter jejuni survives within epithelial cells by avoiding delivery to lysosomes. PLOS Pathogens. 2008;4(1):e14. doi: 10.1371/journal.ppat.0040014. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

71. Hautefort I, Thompson A, Eriksson-Ygberg S, Parker ML, Lucchini S, Danino V, Bongaerts RJM, Ahmad N, Rhen M, Hinton JCD. During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems. Cell Microbiol. 2007;10(4):958–984. doi: 10.1111/j.1462-5822.2007.01099.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

72. Capasso D, Pepe MV, Rossello J, Lepanto P, Arias P, Salzman V, Kierbel A. Elimination of Pseudomonas aeruginosa through efferocytosis upon binding to apoptotic cells. PLOS Pathogens. 2016;12(12):e1006068. doi: 10.1371/journal.ppat.1006068. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

73. Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013;13:722–737. doi: 10.1038/nri3532. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3):233–242. doi: 10.1038/s41556-018-0037-z. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

75. Kimura T, Jain A, Choi SW, Mandell MA, Johansen T, Deretic V. TRIM-directed selective autophagy regulates immune activation. Autophagy. 2017;13(5):989–990. doi: 10.1080/15548627.2016.1154254. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Kimura T, Mandell M, Deretic V. Precision autophagy directed by receptor regulators – emerging examples within the TRIM family. J Cell Sci. 2016;129(5):881–891. doi: 10.1242/jcs.163758. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Iida T, Onodera K, Nakase H. Role of autophagy in the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 2017;23(11):1944–1953. doi: 10.3748/wjg.v23.i11.1944. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM, Frankel G, Levy M, Katz MN, Philbrick WM, Elinav E, Finlay BB, Flavell RA. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045–1059. doi: 10.1016/j.cell.2014.01.026. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F. NLRP4 negatively regulates autophagic processes through an association with Beclin1. J Immunol. 2011;186(3):1646–1655. doi: 10.4049/jimmunol.1001654. [PubMed] [CrossRef] [Google Scholar]

80. Maruyama T, Noda NN. Autophagy-regulating protease Atg4: structure, function, regulation and inhibition. J Antibiot. 2017;71:72. doi: 10.1038/ja.2017.104. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

81. Arimoto H, Takahashi D. 8-Nitro-cGMP: a novel protein-reactive cNMP and its emerging roles in autophagy. In: Seifert R, editor. Non-canonical cyclic nucleotides. Cham: Springer International Publishing; 2017. pp. 253–268. [PubMed] [Google Scholar]

82. Kimmey JM, Stallings CL. Bacterial pathogens versus autophagy: implications for therapeutic interventions. Trends Mol Med. 2016;22(12):1060–1076. doi: 10.1016/j.molmed.2016.10.008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

83. Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR. LC3-associated phagocytosis and inflammation. J Mol Biol. 2017;429(23):3561–3576. doi: 10.1016/j.jmb.2017.08.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]


Page 2

What is the bodys first line of defense against disease

Overview of pathogen-induced phagocytosis and xenophagy mechanisms in epithelial cells. Non-professional phagocytes like epithelial cells can internalise pathogens (dark green) via “trigger” or “zipper” mechanisms. Pathogens using the “trigger” mechanism secrete effector proteins in the host cell. These factors modulate the actin cytoskeleton leading to the generation of membrane ruffles and internalisation. The “zipper” mechanism based on the interaction of host receptors on the plasma membrane with invasion proteins expressed on the pathogen surface. These interactions lead to localised cytoskeleton rearrangement and pathogen uptake. The internalised pathogen-containing vesicles may follow as classical phagosome (P) the lysosomal degradation route (blue arrows). Pathogen-mediated activation of PRRs (surface TLRs, Dectin-1) can lead to LC3-associated phagocytosis (LAP, magenta arrows) and the formation of a LAPosome (L) which is characterised by LC3 (orange spot) on the outer leaflet of the vesicle membrane and a more rapid fusion with the lysosome. In addition, xenophagy (black, solid arrows) may be activated by PRR pathways. TLR signalling activates the E3 ubiquitin ligase TRAF6 that ubiquitinates (Ub) Beclin 1 necessary for xenophagy initiation (a). Activated NODs interact with ATG16L1 which is relevant for phagophore elongation (b). If the pathogen escapes into the cytosol, rupture of the vesicles is sensed via xenophagy receptors (SLRs) that bind galectins. These in turn recognise the cytosolic presence of glycans being normally hidden inside the vesicles. Pathogens entering the cytosol are ubiquitinated (Ub) by different host factors. Some SLRs can bind that ubiquitin coat surrounding the pathogen. Subsequently, SLRs bind LC3 on the elongating phagophore and thereby tag the pathogens and/or cellular regions harbouring the bugs for xenophagic degradation. PRR signalling (orange arrows) often leads to high cellular levels of nitric oxide (NO+) and reactive oxygen species (ROS). ROS upregulate ATG4 expression concurrently mediating oxidation of ATG4 at cysteine (S−). Both events facilitate LC3 enrichment on the phagophore membranes promoting its elongation as well as substrate targeting. NO+ formed by the activity of inducible nitric oxide synthases (iNOS) can nitrify cGMP to 8-nitro-cGMP that modifies cysteines on the bacterial surface (S-guanylation). This leads to enhanced ubiquitination, thereby tagging the pathogen for recognition by SLRs. Members of the TRIM family of auto-/xenophagy receptors are involved in precision xenophagy. TRIMs recognise pathogenic targets (like viral capsids, dark green hexagon) and form a platform for core xenophagy factors (ULK1, Beclin 1, and ATG16L1). Thereby, they bundle initiation, elongation, and substrate targeting to one specific cellular area. After enclosure, the xenophagic vesicle undergoes a maturation process marked by the dissociation of LC3 from the outer membrane (d) and eventually fuses with the lysosome (e) leading to the degradation of the pathogens