What are pluripotent stem cells

  1. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    CAS  PubMed  Article  Google Scholar 

  2. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CAS  PubMed  Article  Google Scholar 

  3. Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G, et al. Adult mice generated from induced pluripotent stem cells. Nature. 2009;461:91–4.

    CAS  PubMed  Article  Google Scholar 

  4. Kang L, Wang J, Zhang Y, Kou Z, Gao S. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell. 2009;5:135–8.

    CAS  PubMed  Article  Google Scholar 

  5. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:86–90.

    CAS  PubMed  Article  Google Scholar 

  6. Shi Y, Inoue H, Wu JC, Yamanaka S. Induced pluripotent stem cell technology: a decade of progress. Nat Rev Drug Discov. 2017;16:115–30.

    CAS  PubMed  Article  Google Scholar 

  7. Hasegawa K, Pomeroy JE, Pera MF. Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell. 2010;6:521–31.

    CAS  PubMed  Article  Google Scholar 

  8. Taylor CJ, Bolton EM, Bradley JA. Immunological considerations for embryonic and induced pluripotent stem cell banking. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:2312–22.

    CAS  Article  Google Scholar 

  9. Devolder K. To be, or not to be? Are induced pluripotent stem cells potential babies, and does it matter? EMBO Rep. 2009;10:1285–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Fadel HE. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review. Bioethics. 2012;26:128–35.

    PubMed  Article  Google Scholar 

  11. Abad M, Mosteiro L, Pantoja C, Canamero M, Rayon T, Ors I, et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature. 2013;502:340–5.

    CAS  PubMed  Article  Google Scholar 

  12. Knoepfler PS. Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells. 2009;27:1050–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR. Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res. 2009;2:198–210.

    PubMed  Article  Google Scholar 

  14. Tan Y, Ooi S, Wang L. Immunogenicity and tumorigenicity of pluripotent stem cells and their derivatives: genetic and epigenetic perspectives. Curr Stem Cell Res Ther. 2014;9:63–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Simonson OE, Domogatskaya A, Volchkov P, Rodin S. The safety of human pluripotent stem cells in clinical treatment. Ann Med. 2015;47:370–80.

    PubMed  Article  Google Scholar 

  16. Ayala FJ. Cloning humans? Biological, ethical, and social considerations. Proc Natl Acad Sci U S A. 2015;112:8879–86.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Taylor CJ, Peacock S, Chaudhry AN, Bradley JA, Bolton EM. Generating an iPSC bank for HLA-matched tissue transplantation based on known donor and recipient HLA types. Cell Stem Cell. 2012;11:147–52.

    CAS  PubMed  Article  Google Scholar 

  18. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to generate integration-free human iPS cells. Nat Methods. 2011;8:409–12.

    CAS  PubMed  Article  Google Scholar 

  19. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A. 2008;105:2883–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.

    CAS  PubMed  Article  Google Scholar 

  21. Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J Am Coll Cardiol. 2016;67:2161–76.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Yamanaka S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell. 2012;10:678–84.

    CAS  PubMed  Article  Google Scholar 

  23. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200.

    CAS  PubMed  Article  Google Scholar 

  24. Eguchi T, Kuboki T. Cellular reprogramming using defined factors and microRNAs. Stem Cells Int. 2016. https://doi.org/10.1155/2016/7530942.

    Article  CAS  Google Scholar 

  25. Moradi S, Asgari S, Baharvand H. Concise review: harmonies played by microRNAs in cell fate reprogramming. Stem Cells. 2014;32:3–15.

    CAS  PubMed  Article  Google Scholar 

  26. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, et al. A small-molecule inhibitor of TGF-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell. 2009;5:491–503.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:795–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, et al. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 2011;21:196–204.

    CAS  PubMed  Article  Google Scholar 

  29. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science. 2013;341:651–4.

    CAS  PubMed  Article  Google Scholar 

  30. Moradi S, Sharifi-Zarchi A, Ahmadi A, Mollamohammadi S, Stubenvoll A, Gunther S, et al. Small RNA sequencing reveals Dlk1-Dio3 locus-embedded MicroRNAs as major drivers of ground-state pluripotency. Stem Cell Rep. 2017;9:2081–96.

    CAS  Article  Google Scholar 

  31. Greve TS, Judson RL, Blelloch R. MicroRNA control of mouse and human pluripotent stem cell behavior. Ann Rev Cell Dev Biol. 2013;29:213–39.

    CAS  Article  Google Scholar 

  32. Moradi S, Braun T, Baharvand H. miR-302b-3p promotes self-renewal properties in leukemia inhibitory factor-withdrawn embryonic stem cells. Cell J. 2018;20:61–72.

    PubMed  Google Scholar 

  33. Lee YJ, Ramakrishna S, Chauhan H, Park WS, Hong S-H, Kim K-S. Dissecting microRNA-mediated regulation of stemness, reprogramming, and pluripotency. Cell Regen. 2016;5:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hassani SN, Moradi S, Taleahmad S, Braun T, Baharvand H. Transition of inner cell mass to embryonic stem cells: mechanisms, facts, and hypotheses. Cell Mol Life Sci. 2019;76:873–92.

    CAS  PubMed  Article  Google Scholar 

  35. Zhu S, Li W, Zhou H, Wei W, Ambasudhan R, Lin T, et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Ctem Cell. 2010;7:651–5.

    CAS  Article  Google Scholar 

  36. Esteban MA, Wang T, Qin B, Yang J, Qin D, Cai J, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Ctem Cell. 2010;6:71–9.

    CAS  Article  Google Scholar 

  37. Xie M, Tang S, Li K, Ding S. Pharmacological reprogramming of somatic cells for regenerative medicine. Acc Chem Res. 2017;50:1202–11.

    CAS  PubMed  Article  Google Scholar 

  38. Ma X, Kong L, Zhu S. Reprogramming cell fates by small molecules. Protein Cell. 2017;8:328–48.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Yoshioka N, Gros E, Li HR, Kumar S, Deacon DC, Maron C, et al. Efficient generation of human iPSCs by a synthetic self-replicative RNA. Cell Stem Cell. 2013;13:246–54.

    CAS  PubMed  Article  Google Scholar 

  40. Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394:189–93.

    CAS  PubMed  Article  Google Scholar 

  41. Lee AS, Tang C, Rao MS, Weissman IL, Wu JC. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19:998–1004.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, et al. Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011;471:63–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Mayshar Y, Ben-David U, Lavon N, Biancotti JC, Yakir B, Clark AT, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell. 2010;7:521–31.

    CAS  PubMed  Article  Google Scholar 

  44. Tompkins JD, Hall C, Chen VC, Li AX, Wu X, Hsu D, et al. Epigenetic stability, adaptability, and reversibility in human embryonic stem cells. Proc Natl Acad Sci U S A. 2012;109:12544–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Amps K, Andrews PW, Anyfantis G, Armstrong L, Avery S, Baharvand H, et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29:1132–44.

    CAS  PubMed  Article  Google Scholar 

  46. Liang G, Zhang Y. Genetic and epigenetic variations in iPSCs: potential causes and implications for application. Cell Stem Cell. 2013;13:149–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Steyer B, Bu Q, Cory E, Jiang K, Duong S, Sinha D, et al. Scarless genome editing of human pluripotent stem cells via transient puromycin selection. Stem Cell Rep. 2018;10:642–54.

    CAS  Article  Google Scholar 

  48. Giacalone JC, Sharma TP, Burnight ER, Fingert JF, Mullins RF, Stone EM, et al. CRISPR-Cas9-based genome editing of human induced pluripotent stem cells. Curr Protoc Stem Cell Biol. 2018;44:5B–7.

    PubMed  PubMed Central  Google Scholar 

  49. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 2015;4:e264.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Guidance for human somatic cell therapy and gene therapy. Hum Gene Ther. 2001;12:303–14.

  51. Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 2016;6:787–97.

    Article  Google Scholar 

  52. Giancola R, Bonfini T, Iacone A. Cell therapy: cGMP facilities and manufacturing. Muscles Ligaments Tendons J. 2012;2:243–7.

    PubMed  PubMed Central  Google Scholar 

  53. Nally JD. Good manufacturing practices for pharmaceuticals. 6th ed. New York: Informa Healthcare; 2007.

    Google Scholar 

  54. Izeta A, Herrera C, Mata R, Astori G, Giordano R, Hernandez C, et al. Cell-based product classification procedure: what can be done differently to improve decisions on borderline products? Cytotherapy. 2016;18:809–15.

    PubMed  Article  Google Scholar 

  55. Alici E, Blomberg P. GMP facilities for manufacturing of advanced therapy medicinal products for clinical trials: an overview for clinical researchers. Curr Gene Ther. 2010;10:508–15.

    CAS  PubMed  Article  Google Scholar 

  56. Lipsitz YY, Timmins NE, Zandstra PW. Quality cell therapy manufacturing by design. Nat Biotechnol. 2016;34:393–400.

    CAS  PubMed  Article  Google Scholar 

  57. Zarzeczny A, Scott C, Hyun I, Bennett J, Chandler J, Charge S, et al. iPS cells: mapping the policy issues. Cell. 2009;139:1032–7.

    CAS  PubMed  Article  Google Scholar 

  58. Lin Z, Owen AB, Altman RB. Genetics. Genomic research and human subject privacy. Science. 2004;305:183.

    CAS  PubMed  Article  Google Scholar 

  59. Greenbaum D, Sboner A, Mu XJ, Gerstein M. Genomics and privacy: implications of the new reality of closed data for the field. PLoS Comput Biol. 2011;7:e1002278.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Mullikin D. Anonymity online is ‘safe’ but can hinder a discussion's validity. Nurs Times. 2015;111:7.

    PubMed  Google Scholar 

  61. Gelinas L, Pierce R, Winkler S, Cohen IG, Lynch HF, Bierer BE. Using social media as a research recruitment tool: ethical issues and recommendations. Am J Bioeth. 2017;17:3–14.

    PubMed  PubMed Central  Article  Google Scholar 

  62. McRobert CJ, Hill JC, Smale T, Hay EM, van der Windt DA. A multi-modal recruitment strategy using social media and internet-mediated methods to recruit a multidisciplinary, international sample of clinicians to an online research study. PLoS One. 2018;13:e0200184.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Correa D, Silva LA, Mondal M, Benevenuto F, Gummadi KP. The many shades of anonymity: characterizing anonymous social media content. Ninth International AAAI Conference on Web and Social Media; 2015.

    Google Scholar 

  64. Ledford H. How Facebook and Twitter could be the next disruptive force in clinical trials. Nature. 2018;563:312–5.

    CAS  PubMed  Article  Google Scholar 

  65. Jefford M, Moore R. Improvement of informed consent and the quality of consent documents. Lancet Oncol. 2008;9:485–93.

    PubMed  Article  Google Scholar 

  66. Mascalzoni D, Hicks A, Pramstaller P, Wjst M. Informed consent in the genomics era. PLoS Med. 2008;5:e192.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Segers S, Mertes H, de Wert G, Dondorp W, Pennings G. Balancing ethical pros and cons of stem cell derived gametes. Ann Biomed Eng. 2017;45:1620–32.

    PubMed  Article  Google Scholar 

  68. Bredenoord AL, Hyun I. Ethics of stem cell-derived gametes made in a dish: fertility for everyone? EMBO Mol Med. 2017;9:396–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Sugarman J. Human stem cell ethics: beyond the embryo. Cell Stem Cell. 2008;2:529–33.

    CAS  PubMed  Article  Google Scholar 

  70. Caulfield T, Ogbogu U, Isasi RM. Informed consent in embryonic stem cell research: are we following basic principles? Canad Med Assoc J. 2007;176:1722–5.

    Article  Google Scholar 

  71. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell. 2012;151:1617–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Grady C, Cummings SR, Rowbotham MC, McConnell MV, Ashley EA, Kang G. Informed consent. New Engl J Med. 2017;376:856–67.

    PubMed  Article  Google Scholar 

  73. Anderson AJ, Cummings BJ. Achieving informed consent for cellular therapies: a preclinical translational research perspective on regulations versus a dose of reality. J law Med Ethics. 2016;44:394–401.

    PubMed  PubMed Central  Article  Google Scholar 

  74. Krackhardt AM, Anliker B, Hildebrandt M, Bachmann M, Eichmuller SB, Nettelbeck DM, et al. Clinical translation and regulatory aspects of CAR/TCR-based adoptive cell therapies-the German Cancer Consortium approach. Cancer Immunol Immunother. 2018;67:513–23.

    CAS  PubMed  Article  Google Scholar 

  75. Sadelain M. CD19 CAR T cells. Cell. 2017;171:1471.

    CAS  PubMed  Article  Google Scholar 

  76. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20:e3015.

    PubMed  Article  Google Scholar 

  77. Savic N, Schwank G. Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 2016;168:15–21.

    CAS  PubMed  Article  Google Scholar 

  78. Stevens KR, Murry CE. Human pluripotent stem cell-derived engineered tissues: clinical considerations. Cell Stem Cell. 2018;22:294–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Wang X, Riviere I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol Ther Oncolytics. 2016;3:16015.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Clement N, Grieger JC. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Meth Clin Dev. 2016;3:16002.

    Article  Google Scholar 

  81. Ausubel LJ, Hall C, Sharma A, Shakeley R, Lopez P, Quezada V, et al. Production of CGMP-grade lentiviral vectors. BioProcess Int. 2012;10:32–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. van der Loo JC, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25(R1):R42–52.

    PubMed  Article  CAS  Google Scholar 

  83. Cahan P, Daley GQ. Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol. 2013;14:357–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Lo B, Parham L, Alvarez-Buylla A, Cedars M, Conklin B, Fisher S, et al. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning. Cell Stem Cell. 2010;6:16–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Wu J, Greely HT, Jaenisch R, Nakauchi H, Rossant J, Belmonte JC. Stem cells and interspecies chimaeras. Nature. 2016;540:51–9.

    CAS  PubMed  Article  Google Scholar 

  86. Ishii T, Pera RA, Greely HT. Ethical and legal issues arising in research on inducing human germ cells from pluripotent stem cells. Cell Stem Cell. 2013;13:145–8.

    CAS  PubMed  Article  Google Scholar 

  87. Liu H, Zhu F, Yong J, Zhang P, Hou P, Li H, et al. Generation of induced pluripotent stem cells from adult rhesus monkey fibroblasts. Cell Stem Cell. 2008;3:587–90.

    CAS  PubMed  Article  Google Scholar 

  88. West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev. 2010;19:1211–20.

    CAS  PubMed  Article  Google Scholar 

  89. Talluri TR, Kumar D, Glage S, Garrels W, Ivics Z, Debowski K, et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogram. 2015;17:131–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology. 2012;77:338–46 e1.

    CAS  PubMed  Article  Google Scholar 

  91. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet. 2019;20:377–88.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. Bruyneel AA, McKeithan WL, Feyen DA, Mercola M. Will iPSC-cardiomyocytes revolutionize the discovery of drugs for heart disease? Curr Opin Pharmacol. 2018;42:55–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Hannoun Z, Steichen C, Dianat N, Weber A, Dubart-Kupperschmitt A. The potential of induced pluripotent stem cell derived hepatocytes. J Hepatol. 2016;65:182–99.

    CAS  Article  PubMed  Google Scholar 

  94. Yi F, Liu GH, Izpisua Belmonte JC. Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell. 2012;3:246–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Genovese NJ, Domeier TL, Telugu BP, Roberts RM. Enhanced development of skeletal myotubes from porcine induced pluripotent stem cells. Sci Rep. 2017;7:41833.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Stanton MM, Tzatzalos E, Donne M, Kolundzic N, Helgason I, Ilic D. Prospects for the use of induced pluripotent stem cells in animal conservation and environmental protection. Stem Cells Transl Med. 2019;8:7–13.

    PubMed  Article  Google Scholar 

  97. Ben-Nun IF, Montague SC, Houck ML, Tran HT, Garitaonandia I, Leonardo TR, et al. Induced pluripotent stem cells from highly endangered species. Nat Methods. 2011;8:829–31.

    PubMed  Article  CAS  Google Scholar 

  98. Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development. 2015;142:3222–30.

    CAS  PubMed  Article  Google Scholar 

  99. Wu J, Platero-Luengo A, Sakurai M, Sugawara A, Gil MA, Yamauchi T, et al. Interspecies chimerism with mammalian pluripotent stem cells. Cell. 2017;168:473–86 e15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Goto T, Hara H, Sanbo M, Masaki H, Sato H, Yamaguchi T, et al. Generation of pluripotent stem cell-derived mouse kidneys in Sall1-targeted anephric rats. Nat Commun. 2019;10:451.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. Hyun I. From naive pluripotency to chimeras: a new ethical challenge? Development. 2015;142:6–8.

    CAS  PubMed  Article  Google Scholar 

  102. Liu X, Nefzger CM, Rossello FJ, Chen J, Knaupp AS, Firas J, et al. Comprehensive characterization of distinct states of human naive pluripotency generated by reprogramming. Nat Methods. 2017;14:1055–62.

    CAS  PubMed  Article  Google Scholar 

  103. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell. 2018;174:245.

    CAS  PubMed  Article  Google Scholar 

  104. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M. Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell. 2011;146:519–32.

    CAS  PubMed  Article  Google Scholar 

  105. Hayashi K, Ogushi S, Kurimoto K, Shimamoto S, Ohta H, Saitou M. Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice. Science. 2012;338:971–5.

    CAS  PubMed  Article  Google Scholar 

  106. Irie N, Weinberger L, Tang WW, Kobayashi T, Viukov S, Manor YS, et al. SOX17 is a critical specifier of human primordial germ cell fate. Cell. 2015;160:253–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, et al. Robust in vitro induction of human germ cell fate from pluripotent stem cells. Cell Stem Cell. 2015;17:178–94.

    CAS  PubMed  Article  Google Scholar 

  108. Yamashiro C, Sasaki K, Yabuta Y, Kojima Y, Nakamura T, Okamoto I, et al. Generation of human oogonia from induced pluripotent stem cells in vitro. Science. 2018;362:356–60.

    CAS  PubMed  Article  Google Scholar 


Page 2

Generation and applications of iPSCs. a Various methods and approaches are used to convert somatic cells into iPSCs. Integrative methods such as integrative viruses and vectors provide the highest reprogramming efficiency but the lowest safety. In contrast, non-integrative approaches such as the use of small molecules and microRNAs tend to have a less reprogramming efficiency. Notably, episomal vectors, which do not integrate with the host cell’s genome, appear to provide both a high efficiency of iPSC generation and sufficient degree of safety. Although all the illustrated approaches could potentially be used to produce iPSCs for applications such as basic research, drug screening, and disease modeling, genomic integration should be avoided for generation of clinical-grade iPSCs. b Because of immortality and immense differentiation potential, iPSCs have all the potential biomedical applications of ESCs. They can be used to model pluripotency and multi-lineage differentiation in vitro, screen and discover new drugs, and establish disease models in a dish. iPSCs also hold a great potential to be used for replacing diseased or lost tissues, which needs specific considerations to provide safe, clinical-grade cells for transplantation into patients