Ukuran tingkat kesukaran benda untuk dihentikan bila sedang berputar disebut

Modul Fisika Kelas XI, KD 3.1@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 1Modul Fisika Kelas XI, KD 3.1DINAMIKA ROTASI & KESEIMBANGAN BENDA TEGAR FISIKA KELAS XI PENYUSUN HERRY SETYAWAN, S.Pd, M.Si SMA NEGERI 2 SAROLANGUN@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 2Modul Fisika Kelas XI, KD 3.1 DAFTAR ISIPENYUSUN ................................................................................................................................................. 2DAFTAR ISI ................................................................................................................................................3GLOSARIUM............................................................................................................................................... 4PETA KONSEP...........................................................................................................................................5PENDAHULUAN ....................................................................................................................................... 6A. Identitas Modul ............................................................................................................. 6B. Kompetensi Dasar ......................................................................................................... 6C. Deskripsi Singkat Materi............................................................................................... 6D. Petunjuk Penggunaan Modul ........................................................................................ 6E. Materi Pembelajaran ..................................................................................................... 7KEGIATAN PEMBELAJARAN 1 ...........................................................................................................8DINAMIKA ROTASI BENDA TEGAR .................................................................................................8A. Tujuan Pembelajaran..................................................................................................... 8B. Uraian Materi ................................................................................................................ 8C. Rangkuman ................................................................................................................. 19D. Latihan Soal ................................................................................................................ 20E. Penilaian Diri .............................................................................................................. 24KEGIATAN PEMBELAJARAN 2........................................................................................................ 26KESEIMBANGAN BENDA TEGAR ................................................................................................... 26A. Tujuan Pembelajaran................................................................................................... 26B. Uraian Materi .............................................................................................................. 26C. Rangkuman ................................................................................................................. 36D. Penugasan Mandiri...................................................................................................... 36E. Latihan Soal ................................................................................................................ 37F. Penilain Diri ................................................................................................................ 40EVALUASI................................................................................................................................................ 42DAFTAR PUSTAKA..................................................................................................................................4@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 3Modul Fisika Kelas XI, KD 3.1 GLOSARIUMMomen Gaya : Besaran yang menyebabkan benda untuk bergerak rotasi atau tingkat keefektifan suatu benda bergerak rotasiMomenInersia : Ukuran kelembaman suatu benda untuk bergerak rotasi padaTitik Berat porosnyaBendaMomentum : Titik berat benda adalah titik tangkap gaya berat suatu benda, diSudut mana titik tersebut dipengaruhi oleh medan gravitasi.Benda Tegar : ukuran kesukaran benda untuk mengubah arah gerak benda yang sedang berputar atau bergerak melingkar. : Benda yang tidak mengalami perubahan bentuk setelah diberikan gaya pada benda tersebut.Energi : Energi yang dimiliki benda ketika benda tersebut bergerak, baikKinetik bergerak translasi, rotasi maupun vibrasi.@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 4Modul Fisika Kelas XI, KD 3.1 PETA KONSEP DINAMIKA TORSI Gaya ROTASI (MOMEN Lengan BENDA Momen TEGAR GAYA) MOMEN Massa INERSIA benda DINAMIKA Jarak ROTASI Partikel & ke Pusat RotasiKESEIMBANGAN BENDA TEGAR Gerak Menggelinding Energi Kinetik Momentum Sudut Hukum Kekekalan Energi Mekanik KESEIMBANGAN Keseimbangan BENDA TEGAR Benda Titik Berat@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 5Modul Fisika Kelas XI, KD 3.1A. Identitas Modul PENDAHULUAN Mata Pelajaran : Fisika Kelas : XI Alokasi Waktu : 8 Jam Pelajaran (2 Pertemuan) Judul Modul : Dinamika dan Keseimbangan Benda TegarB. Kompetensi Dasar 3. 1 Menerapkan konsep torsi, momen inersia, titik berat, dan momentum sudut pada benda tegar (statis dan dinamis) dalam kehidupan sehari-hari misalnya dalam olahraga 4.1 Membuat karya yang menerapkan konsep titik berat dan kesetimbangan benda tegarC. Deskripsi Singkat Materi Peserta didik yang hebat, generasi masa depan “Indonesia Maju” semoga Ananda semua selalu dalam keadaan sehat dalam lindungan Tuhan YME, jangan mudah mengeluh dalam berbagai keterbatasan. Buatlah keterbatasan yang ada menjadi peluang untuk dapat melakukan yang terbaik, sehingga Ananda semua menjadi generasi yang tangguh dalam kondisi apapun yang senantiasa selalu mengharap petunjuk dan ridho dari Tuhan YME. Pada modul kali ini yang membahas tentang Dinamika dan Keseimbangan Benda Tegar yang membahas tentang gerak dan penyebab terjadinya gerak benda yang terjadi pada lintasan rotasi, analisis gerak benda yang menggelinding untuk benda tegar dan keseimbangannya. Terdapat prasyarat utama sebelum membahas materi pada modul ini yaitu Ananda harus memahami konsep tentang besaran-besaran pada kinematika translasi yang membahas tentang konsep gerak benda dengan kecepatan konstan (GLB) dan gerak benda dengan percepatan konstan (GLBB) yang terdapat pada modul Fisika Kelas X KD. 3.4, kinematika rotasi KD 3.6, Hukum Newton tentang Gerak Benda KD 3,7, Usaha dan Energi KD 3.9 dan KD 3,10 yang membahas tentang momentum dan impuls. Dengan memahami isi secara utuh dalam modul ini, maka ananda akan mampu menjelaskan tentang bergeraknya sebuah benda yang merupakan pondasi awal dalam mempelajari fenomena Fisika secara lebih detail. Diharapkan setelah mempelajari modul ini dapat menuntun Ananda semua untuk mematangkan analisa dan mampu berimajinasi dalam proses pergerakan benda tegar secara utuh.D. Petunjuk Penggunaan Modul Agar modul dapat digunakan secara maksimal, maka peserta didik diharapkan melakukan langkah-langkah sebagai berikut : 1. Pelajari daftar isi serta skema peta konsep dengan cermat dan teliti.@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 6Modul Fisika Kelas XI, KD 3.1 2. Pahami setiap materi dengan membaca secara teliti dan perhatikan seksama. Apabila terdapat contoh soal, maka cobalah kerjakan kembali contoh tersebut tanpa melihat modul sebagai sarana berlatih. 3. Perhatikan perintah dan langkah-langkah dalam melakukan percobaan dengan cermat untuk mempermudah dalam memahami konsep, sehingga diperoleh hasil yang maksimal. 4. Bila terdapat penugasan dan latihan soal, kerjakan tugas tersebut dengan baik dan jika perlu konsultasikan hasil tersebut pada guru. 5. Catatlah kesulitan yang Anda dapatkan dalam modul ini untuk ditanyakan pada guru pada saat kegiatan tatap muka. Bacalah referensi lain yang berhubungan dengan materi modul agar Anda mendapatkan pengetahuan tambahan. 6. Diakhir materi terdapat evaluasi, maka kerjakan evaluasi tersebut sebagaimana yang diperintahkan sebagai tolak ukur ketercapaian kompetensi dalam mempelajari materi pada modul ini.E. Materi Pembelajaran Modul ini terbagi menjadi 2 kegiatan pembelajaran dan di dalamnya terdapat uraian materi, contoh soal, soal latihan dan soal evaluasi. Pertama : Dinamika Rotasi Benda Tegar Kedua : Keseimbangan Benda Tegar@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 7Modul Fisika Kelas XI, KD 3.1 KEGIATAN PEMBELAJARAN 1 DINAMIKA ROTASI BENDA TEGARA. Tujuan Pembelajaran Setelah kegiatan pembelajaran 1 ini, Ananda diharapkan dapat: 1. memahami konsep momen gaya dan momen inersia; 2. merumuskan hubungan antara momen gaya dan percepatan sudut; 3. memahami konsep energi kinetik rotasi dan gerak menggelinding; 4. merumuskan hubungan antara momen inersia dan momentum sudut; dan 5. menyelesaikan soal-soal yang berkaitan dengan dinamika rotasi.B. Uraian Materi Dinamika rotasi adalah ilmu yang mempelajari tentang gerak rotasi (berputar) dengan memperhatikan aspek penyebabnya, yaitu momen gaya. Momen gaya atau yang lebih dikenal dengan torsi ini akan menyebabkan terjadinya percepatan sudut. Suatu benda dikatakan melakukan gerak rotasi (berputar) jika semua bagian benda bergerak mengelilingi poros atau sumbu putar. Sumbu putar benda terletak pada salah satu bagian dari benda tersebut. Benda tegar merupakan benda yang tidak mengalami perubahan bentuk akibat pengaruh gaya, sehingga dalam melakukan pergerakan, benda tersebut tidak mengalami perubahan bentuk dan volume benda. Benda tegar dapat melakukan gerak translasi dan rotasi 1. Momen Gaya/ Torsi (τ) Apakah Momen Gaya/ Torsi Itu? Untuk melihat suatu benda diam menjadi bergerak translasi (lurus), anda perlu mengerjakan gaya pada benda itu. Analog dengan itu, untuk membuat suatu benda tegar berotasi (berputar) terhadap suatu poros tertentu, anda perlu mengerjakan torsi (dari bahasa latin torquere; memutar) pada suatu benda. Momen gaya atau torsi (τ) merupakan besaran vektor yang mengakibatkan benda berotasi atau berputar. Besaran-besaran apakah yang berkaitan dengan torsi? Perhatikan gambar berikut !@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 8Modul Fisika Kelas XI, KD 3.1 Berdasarkan Gambar di atas, orang memberikan gaya kepada kunci sehingga kunci dapat memutar baut. Baut berfungsi sebagai sumbu rotasi, sedangkan perpanjangan garis gaya disebut garis kerja gaya. Jika gaya (F) yang diberikan tangan (garis kerja gaya) tegak lurus terhadap lengan kunci, maka lengan kunci ini berfungsi sebagai lengan gaya. Namun, jika gaya yang diberikan tidak tegak lurus lengan kunci, maka lengan gaya merupakan jarak yang tegak lurus dari sumbu rotasi dengan garis kerja gaya (r). Untuk memahami komnsep Momen Gaya /Torsi (τ), Perhatikan beberapa kejadian berikut !Sekarang Ananda coba perhatikan Gambar di atas, Untuk memutar baut,kedudukan tangan seperti gambar (c) lebih mudah dilakukan daripadakedudukan tangan pada gambar (b) dan (a). Sementara kedudukan tanganseperti gambar (b) lebih mudah dilakukan daripada seperti gambar (a). Gaya (F)yang diperlukan untuk memutar baut pada kedudukan (c) lebih kecil dari gayayang diperlukan pada gambar (b) atau (a). Berdasarkan fakta ini, besar gayaputar atau momen gaya tidak hanya ditentukan oleh besar gaya, tetapi jugapanjang lengan gaya (r). Hubungan ketiga faktor ini, diberikan denganpersamaan berikut. = × atau = Dimana :τ = Momen Gaya (Nm)F = Gaya yang bekerja (N)r = Lengan Momen (m)θ = sudut yang terbentuk antara garis kerja gaya F terhadap lengan momen rSeperti halnya gaya F, torsi τ juga termasuk besaran vektor, yang memilikibesar dan arah. Bedanya, arah torsi hanya dua, searah atau berlawanan arahjarum jam. Kedua arah torsi ini cukup dibedakan dengan memberikan tandapositif (berlawanan dengan perputaran arah jarum jam), atau negatif (searah@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 9Modul Fisika Kelas XI, KD 3.1 dengan perputaran arah jarum jam). Supaya konsisten dengan aturan matematika maupun aturan arah pada momentum sudut dan gaya Lorentz (pelajaran kelas XII). Contoh Soal 1 : Tiga buah gaya bekerja pada batang AD yang bermassa 2 kg seperti pada gambar. Hitunglah resultan momen gaya terhadap titik B ! ( dimana g = 10 m/s²) Jawab : Untuk menentukan momen gaya yang bekerja pada titik B pada benda tegar AD yang bermassa 2 kg, maka uraian vektor – vektor gaya yang bekerja pada benda dapat diperoleh sebagai berikut = + + = (− . 1) + (− . ) + ( . 3 ) = (−0,2 . 5) + (−0,25 . 2 . 10) + (0,55. 3 . 300) 1 = (−1) + (−5) + (0,55. 4 . 2) = (−1) + (−5) + (1,1) = (−1) + (−5) + (1,1) = − , Jadi, resultan momen gaya terhadap titik B (B sebagai poros) adalah 4,9 Nmdengan arah searah putaran jarum jam2. Momen Inersia (I) Momen inersia (I) merupakan besaran yang menyatakan ukuran kecenderungan benda untuk tetap mempertahankan keadaannya (kelembaman). Pada gerak rotasi, momen inersia juga dapat menyatakan@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 10Modul Fisika Kelas XI, KD 3.1 ukuran kemampuan benda untuk mempertahankan kecepatan sudut rotasinya. Benda yang sukar berputar atau benda yang sulit dihentikan saat berputar memiliki momen inersia yang besar, dan sebaliknya. Momen inersia didefnisikan sebagai hasil kali antara massa partikel dan kuadrat jarak partikel dari sumbu rotasi. Secara matematis, momen inersia dapat dirumuskan sebagai berikut. = . 2 Dimana : I = Momen inersia (kgm2) m = massa partikel (kg) r = jarak partikel dari sumbu pusat rotasi (m) Jika terdapat sejumlah partikel dengan massa masing-masing m1, m2, m3,... dan memiliki jarak r1, r2, r3, ... terhadap poros, maka momen inersia totalnya adalah penjumlahan momen inersia setiap partikel, yaitu sebagai berikut. Atau secara pengintegralan dapat ditulis dengan persamaan: = ∫ Berdasarkan konsep momen inersia I yang telah dipaparkan di atas, berikut beberapa persamaan momen inersia benda tegar yang teratur bentuknya dan berotasi pada sumbu tertentu seperti t e r t e r a pada gambar tabel berikut:@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 11Modul Fisika Kelas XI, KD 3.1Menentukan Momen Inersia Benda Tegar dengan prinsip Teorema Sumbu SejajarBerdasarkan tabel di atas, kita telah mengetahui bahwa momen inersiabatang silinder bermassa M dengan panjang L yang porosnya melalui pusatmassa (tabel a) adalah = 1 2. Untuk mendapatkan Momen Inersia 12Batang silinder yang bergerak pada ujung batang maka dapat digunakandengan prinsip Teorema Sumbu Sejajar dengan persamaan sebagai berikut : = + 2 Dimana : Is = Momen Inersia titik pusat rotasi (Nm2) Ipm = Momen Inersia benda di pusat massa (Nm2) M = Massa benda (kg) d = Jarak antara titik pusat massa ke titik rotasi (m)sehingga untuk mendapatkan momen inersia batang silinder yang bergerak padaujung batang dapat diperoleh :@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 12Modul Fisika Kelas XI, KD 3.1 = + 2 = + 2 = 1 2 + 2 12 (2) = 1 2 + 1 2 12 4 = 1 2 + 3 2 12 12 = 4 2 12 = 1 2 Terbukti sesuai dengan “tabel b” 3Berdasarkan uraian di atas dapat disimpulkan bahwa besar momen inersiabenda tegar dipengaruhi oleh :• Bentuk atau ukuran benda• Massa benda• Sumbu pusat rotasiContoh Soal 2 :Perhatikan gambar !Batang AB massa 2 kg diputar melalui titik A, ternyata momen inersia nya 8kg.m2, Tentukan momen inersia batang tersebut jika diputar dititik O ! (dimanapanjang AO = OB)Jawab :Telah diperoleh dari tabel momen inersia benda tegar pada batang bahwa = 1 2 dan = 1 2 12 3Jadi diperoleh = 1 2 12 1 2 3@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 13Modul Fisika Kelas XI, KD 3.1 = 3 12 = 18 4 = . Jadi, jika batang tersebut iputar di tengah, maka batang tersebut memilikimomen inersia sebesar 2 kg.m23. Hubungan antara Momen Gaya (τ), Momen Inersia (I) dan Percepatan Sudut (α) Untuk mendapatkan hubungan antara Momen Gaya (τ), Momen Inersia (I) dan Percepatan Sudut (α), maka kita dapat menganlogikan dengan menerapkan hukum Newton II translasi, yaitu : ∑ = . = . = . ( . ) . = . ( . ) . = . 2. Diperoleh = . atau ∑ τ = . disebut Hukum Newton II Gerak rotasi Dimana : τ = Momen Gaya (N.m) I = Momen Inersia (kg.m2) α = Percepatan Sudut (rad/s2)Contoh Soal 3 : Sebuah silinder pejal berjari-jari 15 cm, danPerhatikan gambar berikut ! bermassa 2 kg dijadikan katrol pada sebuah sumur seperti gambar di samping. Batang yang dijadikan poros memiliki permukaan licin sempurna. Seutas tali yang massanya dapat diabaikan, digulung pada silinder. Kemudian, sebuah ember bermassa 1 kg diikatkan pada ujung tali. Tentukan percepatan ember saat jatuh ke dalam sumur..! Jawab : 14 Diketahui Massa Katrol M = 2 kg Jari-jari katrol r = 15 cm = 0,15 cm@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMENModul Fisika Kelas XI, KD 3.1Momen Inersia Katrol silinder pejal = 1 2 2Massa Ember m = 1 kgDitanyaPercepatan Ember a = ...?Dalam menjawab kasus seperti ini, Ananda harus mengidentifikasi benda-benda yang bergerak, dalam hal ini adalah katrol silinder pejal dan ember• Lihat Katrol (mengalami gerak rotasi) Berlaku Hukum Newton II rotasi• Lihat Ember (mengalami gerak translasi) Berlaku Hukum Newton II translasiDari persamaan (a) disubstitusi ke persamaan (b) diperoleh . − 2 = . . = . + 2 . = ( + 2) . = ( + )Dengan memasukkan nilai momen inersia I, maka dapat ditulis . = ( + 21 2 2) = . ( + 1 ) 2 = 1 .10 (1 + 1 2) 2 10 = / = 2@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 15Modul Fisika Kelas XI, KD 3.1 Jadi, percepatan yang dialami ember ketika menuruni sumur adalah 5 m/s24. Energi Kinetik Rotasi (Ekrot) Benda yang berputar pada poros nya memiliki suatu bentuk energi yang disebut energi kinetik rotasi (Ekrot). Persamaan energi kinetik rotasi ini dapat diturunkan dari konsep energi kinetik translasi yaitu : = Dengan menganggap benda bergerak rotasi, maka kecepatan linier benda dapatditulis = . , sehingga diperoleh : = 1 ( . )2 2 1 = 2 2 2Sehingga persamaan Ekrot dapat ditulis : = Dimana :Ekrot = Energi Kinetik Rotasi (Joule)I = Momen Inersia benda (kg.m2)ῳ = Kecepatan Sudut benda (rad/s)Gerak MenggelindingPerhatikan gambar berikut !Pada gambar di atas, suatu benda bergerak menggelinding, maka benda tersebutmelakukan gerak translasi (memiliki v) sekaligus gerak rotasi memiliki (ῳ). Olehkarena itu, energi kinetik yang dimiliki benda juga terdiri atas energi kinetiktranslasi dan rotasi, sehingga diperoleh : = + = 1 . 2 + 1 . 2 2 2@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 16Modul Fisika Kelas XI, KD 3.1 Hukum Kekekalan Energi Mekanik pada Gerak Menggelinding Benda yang mengalami gerak menggelinding pasti terjadi pada lantai yang kasar, sehingga pada lantai tersebut bekerja gaya gesekan (fg). Pada kasus ini, gaya gesekan(fg) dapat dimasukkan dalam gaya yang terdapat pada dalam diri sistem gerak, sehingga akan berlaku Hukum Kekekalan Energi Mekanik, dengan memasukkan Ekrot sebagai variabel tambahan pada Energi Kinetik total. Perhatikan gambar kejadian berikut !Dalam kasus ini Hukum Kekekalan Energi Mekanik dapat ditulis : = + = + + ( . + . ) = + ( . + . ) . . ℎ + 1 . 2 + 1 . 2 ) = . . ℎ + 1 . 2 + 1 . 2 ) (2 2 (2 2Contoh soal 4 :Sebuah silinder pejal bermassa 2 kg bergerak menggelinding dengan kecepatan 4m/s. Tentukan besar Energi Kinetik yang dimiliki oleh silinder pejal tersebut.(dimana momen inersia silinder pejal = 1 2) 2Jawab :Karena silinder pejal bergerak menggelinding, maka silinder pejal mengalami geraktransalasi dan rotasi, sehingga Energi Kinetik Total pada silinder pejal tersebut dapatditulis : = + = 1 . 2 + 1 . 2 2 2 = 1 . 2 + 1 1 2) 2 2 2 (2 ( ) = 1 . 2 + 1 . 2 2 4 = 3 . 2 4 = 3 (2) . (4)2 4 = Jadi, besar enenrgi kinetik silinder pejal yang menggelinding tersebut adalah 24Joule@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 17Modul Fisika Kelas XI, KD 3.15. Momentum Sudut (L) Momentum sudut (L) didefinisikan sebagai perkalian silang antara vektor momentum linear benda p dan vektor posisi r. = × Secara matematis, penurunan persamaan momentum sudut L dapat berawal dari konsep momentum linier p, dan dapat ditulis: = . Dengan menganggap benda bergerak rotasi, maka kecepatan linier benda dapat ditulis = . , sehingga diperoleh : = . ( . ) . = . . ( . ) = . . Sehingga momentum sudut L persamaannya dapat ditulis : = . Dimana : L : Momentum sudut (kg. m2/s) I : Momen inersia benda (kg.m2) ῳ : Kecepatan sudut (rad/s)Hukum Kekekalan Momentum SudutHukum kekekalan momentum linier menyatakan bahwa jika pada suatu sistemtidak ada resultan gaya yang bekerja (ΣF = 0) momentum linier sistem adalahkekal (konstan). Pada gerak rotasi jika tidak ada resultan momen gaya/torsi (Στ =0) maka juga akan berlaku hukum kekekalan momentum sudut, sehingga secarakonseptual dapat ditulis : 1 = 2 1. 1 = 2. 2Hukum Kekekalan Momentum Sudut berbunyi :“Jika tidak ada resultan momen gaya luar yang bkerja pada sitem (Στ = 0), makamomentum sudut didtem adalah kekal (konstan)”Atau dapat ditulisJika = = , maka = @2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 18Modul Fisika Kelas XI, KD 3.1Contoh soal 5 :Seorang penari balet yang berputar dengan lengan terentang dan kelajuan 3rad/s memiliki momen inersia 12 kg.m². Jika saat lengannya merapat ke tubuh,momen inersianya menjadi 4 kg.m², maka berapakah laju putaran kecepatansudut ketika lengannya merapat tersebut?JawabKarena tidak ada gaya luar yang bekerja pada sistem penari balet tersebut, makaberlaku Hukum Kekekalan Momentum Sudut 1 = 2 1. 1 = 2. 2(12 )(3) = (4) 236 = (4) 2 36 2 = 4 = / Jadi, ketika tangan penari balet direntangkan, maka kecepatan sudut penari balettersebut adalah 9 rad/sC. Rangkuman Dari hasil pemaparan tentang Dinamika rotasi benda tegar dapat ditulis beberapa rangkuman, yaitu : 1. Momen gaya atau torsi (τ) merupakan besaran vektor yang mengakibatkan benda berotasi atau berputar. ∑ τ = . 2. Momen inersia (I) didefnisikan sebagai hasil kali antara massa partikel dan kuadrat jarak partikel dari sumbu rotasi. Secara matematis, momen inersia dapat dirumuskan sebagai berikut. = . 23. Hubungan antara Momen gaya atau torsi (τ) dengan Momen inersia (I) dapat ditulis dengan ∑ τ = . 4. Energi kinetik total benda yang bergerak menggelinding adalah = + = 1 . 2 + 1 . 2 2 25. Pada gerak rotasi jika tidak ada resultan momen gaya/torsi (Στ = 0) maka juga akan berlaku hukum kekekalan momentum sudut, sehingga secara konseptual dapat ditulis: 1 = 2 1. 1 = 2. 2@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 19Modul Fisika Kelas XI, KD 3.1D. Latihan Soal1. Perhatikan gambar di bawah ini ! sebuah katrol berupa silinder pejal memiliki massa M sebesar 4 kg, menghubungkan benda yang bermassa m1 = 2 kg dan m2 = 4 kg dengan seutas tali tak bermassa sehingga mengakibatkan katrol tersebut berotasi. Jika percepatan gravitasi bumi g = 10 m/s2, dan momen inersia katrol = 1 2, tentukan : 2 a. Percepatan (a) yang dialamimoleh beban m1 dan m2 b. Besar tegangan tali yang bekerja pada benda m1 (T1) c. Besar Tegangan tali yang bekerja pada benda m2 (T2)2. Perhatikan gambar berikut ! Sebuah bola pejal homogen ( = 2 2) bermassa 3 M = 2 kg menuruni dari puncak bidang miring yang kasar, sehingga bola pejal tersebut menggelinding yang terlihat seperti gambar di samping. Jika g = 10 m/s2, Tentukan : a. Besar percepatan (a) bola pejal tersebut ketika menuruni bidang miring b. Kecepatan bola pejal ketika berada didasar bidang miring (gunakan cara konsep Kinematika) c. Kecepatan bola pejal ketika berada didasar bidang miring (gunakan cara konsep hukum kekekalan energi mekanik)@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 20Modul Fisika Kelas XI, KD 3.1Pembahasan Soal LatihanNomor 1Perhatikan uraian vektor pada gambar berikut ! - Lihat Katrol (Mengalami rotasi) Berlaku Hukum Newton II Rotasi ∑ = 1 + 2 = 1 (2 ( ) (− 1 ) + ( 2 ) = 2) 2 − 1 = 1 . ...................................(1) 2 - Lihat benda 1 (mengalami gerak translasi) Berlaku Hukum Newton II Translasi ∑ 1 = 1 1 − 1 = 1 1 − 1 = 1 1 = 1 + 1 ..................................(2)- Lihat benda 2 (mengalami gerak translasi) Berlaku Hukum Newton II Translasi ∑ 2 = 2 − 2 + 2 = 2 − 2 + 2 = 2 2 = 2 − 2 ..................................(3)a. Menentukan percepatan linier yang dialami kedua benda (a)Substitusi Persamaan (2) dan (3) ke persamaan (1) diperoleh : 2 − 1 = 2 . 5 1 . ( 2 − 2 ) − ( 1 + 1 ) = 2 1 2 − 2 − 1 − 1 = 2 . 2 − 1 = 1 . + 2 + 1 2 (1( 2 − 1 ) = + 2 + 1) 2 ( − ) = ( + + ) Dengan memasukkan nilai-nilai dari setiap variabel diperoleh : (4 − 2)10 = (1 . 4 + 4 + 2) 2 = 20 sehingga diperoleh = / 8 Jadi percepatan linier yang dialami kedua benda tersebut adalah / @2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 21Modul Fisika Kelas XI, KD 3.1b. Menentukan T1Lihat benda 1 dan dperoleh persamaan (2), sehingga dapat ditulis : 1 = 1 + 1 1 = (2 . 5) + (2 . 10) 2 1 = (5) + (20) 1 = Jadi, besar tegangan tali yang menahan benda 1 (T1) adalah 25 Newtonc. Menentukan T2 Lihat benda 2 dan dperoleh persamaan (3), sehingga dapat ditulis : 2 = 2 − 2 2 = (4. 10) − (4. 5) 2 2 = (40) − (10) 2 = Jadi, besar tegangan tali yang menahan benda 2 (T2) adalah 30 NewtonNomor 2Perhatikan uraian vektor pada sistem berikut ! Diketahui : Massa bola pejal M = 2 kga. Menentukan besar percepatan (a) yang dialami bola pejal = √ 2 + 2 = √32 + 42 = √9 + 16 = 5 = sin = . . sin Ditanya : a. a = ........? b. vB = .........? (cara konsep Kinematika) c. vB = .........? (cara konsep Hk. Kekekalan EM)Karena lintasan kasar, maka bola pejal menggelinding, sehingga bola pejal mengalamigerak rotasi dan gerak translasi- Bola Pejal Berotasi ∑ = 1 = 2 (3 ( ) ( . ) = 2) = . ...........................(1) @2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 22Modul Fisika Kelas XI, KD 3.1- Bola Pejal Bertranslasi ∑ = . ...........................(2) − = . . . − = . - Persamaan (1) di substitusi ke persamaan (2) diperoleh . . sin − = . . . sin − 2 . = . 3 2 ( . sin ) − (3 ) = 2 ( . sin ) = + (3 ) 5 ( . sin ) = 3 = ( . ) Sehingga diperoleh: 33 = 5 (10. 5) = / Jadi, besar percepatan yang dialami bola pejal tersebut ketika menuruni bidang miring adalah / b. Menentukan besar kecepatan bola pejal di titik B (cara konsep Kinematika)Benda mengalami percepatan konstan, sehingga bola pejal tersebut bergerak GLBBketika menuruni bidang miring, sehingga berlaku persamaan 2 = 2 + 2 ∆ 2 = 2 + 2 ∆ 2 = 02 + (2) 18 (5) (5) 2 = 36 = / Jadi, besar kecepatan yang dialami bola pejal tersebut ketika berada dititik terendah Badalah / c. Menentukan besar kecepatan bola pejal di titik B (cara konsep Hk. Kekekalan EM)Karena pada sistem bola pejal tidak ada gaya luar yang mempengaruhi sistem, makaberlaku Hukum Kekekalan Energi Mekanik, sehingga diperoleh : = + = + + ( . + . ) = + ( . + . ) . . ℎ + (1 . 2 + 1 . 2 ) = . . ℎ + (1 . 2 + 1 . 2 ) 2 2 2 2@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 23Modul Fisika Kelas XI, KD 3.1 . . ℎ + (0) = (0) + (21 . 2 + 1 (23 2) . ( 22 )) 2 . . ℎ = (1 . 2 + 2 . 2 ) 6 2 5 . . ℎ = 6 . 2 2 = 6 . . ℎ 5 = √6 . . ℎ 5 = √6 . (10) . (3) 5 = √180 5 = √36 = / Jadi, besar kecepatan yang dialami bola pejal tersebut ketika berada dititik terendahB adalah / TERBKTI :Hasil jawaban soal 2.a dan 2.b sama, maka dapat disimpulkan bahwa dalam gerakmenggelinding walaupun sistem terdapat gaya gesekan, ternyata masih tetapberlaku Hukum Kekekalan Energi Mekanik, karena dengan adanya gaya gesekantersebut membuat sistem benda (bola pejal) mengalami energi kinetik rotasi.E. Penilaian DiriIsilah pertanyaan pada tabel di bawah ini sesuai dengan yang kalian ketahui, berilahpenilaian secara jujur, objektif, dan penuh tanggung jawab dengan memberi tandapada kolom Jawaban. No Pertanyaan Jawaban Ya Tidak 1 Apakah Ananda memahami konsep Momen Gaya (τ), Momen Inersia (I) dan hubungan antara keduanya? 24 2 Apakah Ananda mengetahui dan memahami konsep- konsep turunan dari pemaparan dinamika rotasi seperti Hukum Newton II rotasi, energi kinetik rotasi (Ekrot), gerak menggelinding, hukum kekekalam mekanik pada gerak menggelinding dan Hukum kekekalan momentum sudut yang merupakan konsep turunan pembelajaran sebelumnya (KD kelas X)? 3 Apakah Ananda mampu memahami dan menganalisa contoh-contoh soal dan latihan soal yang diberikan telah diberikan tentang konsep Dinamika Rotasi Benda Tegar? Jumlah@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMENModul Fisika Kelas XI, KD 3.1 Catatan: • Jika ada jawaban “Tidak” maka segera lakukan review pembelajaran. • Jika semua jawaban “Ya” maka Anda dapat melanjutkan kegiatan Pembelajaran berikutnya@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 25Modul Fisika Kelas XI, KD 3.1 KEGIATAN PEMBELAJARAN 2 KESEIMBANGAN BENDA TEGARA. Tujuan Pembelajaran Setelah kegiatan pembelajaran 2 ini, Ananda diharapkan dapat 1. Memahami syarat keseimbangan benda tegar. 2. Memahami konsep titik berat. 3. Menyelesaikan soal-soal yang berkaitan dengan keseimbangan dan titik berat benda tegarB. Uraian Materi Dalam kegiatan pembelajaran 2 pada modul ini, Ananda akan mempelajari keseimbangan benda tegar. Dalam hal ini akan dititik beratkan pada keseimbangan statis dan menentukan titik pusat massa (titik berat) dari suatu benda tegar. Dalam prose pembelajaran ini, Ananda harus menguasai dengan baik kemampuan menggambar dan menguraikan diagram vektor gaya yang bekerja pada titik partikel, yang telah dipelajari di kelas X1. Keseimbangan Statis Benda Tegar. Dalam sistem partikel, benda dianggap sebagai suatu titik materi. Semua gaya yang bekerja pada benda dianggap bekerja pada titik materi tersebut, sehingga gaya yang bekerja pada partikel hanya menyebabkan gerak translasi (tidak menyebabkan gerak rotasi). Oleh karena itu, syarat yang berlaku bagi keseimbangan sistem partikel hanyalah keseimbangan translasi (ΣF = 0). Benda tegar merupakan benda yang tidak berubah bentuk jika diberi gaya F tertentu pada benda tersebut, hal ini disebabkan karena pada benda tegar memiliki banyak partikel dan saling mengatkan satu sama lain dan membentuk sesuatu dengan ukuran tertentu. Jadi dalam hal ini benda tegar merupakan kumpulan titik –titik materi yang berupa sistem partikel, sehingga mengakibatkan benda tidak hnaya mengalami gerak translasi tetapi meilki kemungkinan untuk bergerak rotasi. Hal ini akan mempengaruhi syarat suatu benda tegar untuk mengalami keseimbangan statis.Dari analisa uraian di atas, dapat disimpulkan bahwa secara matematis syarat suatubenda tegar mengalami keseimbangan statis adalah :a. Tidak ada resultan gaya yang bekerja pada benda tegar ∑ = Dimana : ∑ = dan ∑ = b. Tidak ada resultan momen gaya yang bekerja pada benda tegar ∑ = @2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 26Modul Fisika Kelas XI, KD 3.1Perhatikan Gambar di atas! Pemain akrobat berdiri di atas tali dengan membawatongkat yang panjang. Pemain ini memegang tongkat tepat di tengah-tengah.Akibatnya, gaya berat tongkat pada setiap sisi sama besar. Gaya ini menimbulkanmomen gaya pada sumbu putar (tubuh pemain akrobat) sama besar dengan arahberlawanan, sehingga terjadi keseimbangan rotasi. Ini menyebabkan pemainlebih mudah berjalan di atas tali.Jenis – jenis KeseimbanganAda tiga jenis keseimbangan, yaitu keseimbangan stabil, keseimbangan labil, dankeseimbangan netral. Keseimbangan stabil adalah keseimbangan yang dialamibenda dimana sesaat setelah gangguan kecil dihilangkan, benda akan kembali kekedudukan keseimbangannya semula (Gambar a). Keseimbangan labil adalahkeseimbangan yang dialami benda dimana setelah gangguan kecil dihilangkan,benda tidak akan kembali ke kedudukannya semula, bahkan gangguan tersebutmakin meningkat (Gambar b). Keseimbangan netral (atau indiferen) adalahkeseimbangan di mana gangguan kecil yang diberikan tidak akan mempengaruhikeseimbangan benda (Gambar c)@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 27Modul Fisika Kelas XI, KD 3.1 Contoh Soal 1 : Perhatikan sistem keseimbangan berikut !AC adalah batang homogen yang memiliki panjang 120 cm dan berat 22 N.Pada ujung batang, digantung sebuah balok dengan berat 40 N. Tentukanbesar tegangan tali BC jika AB = 90 cmJawab :Perhatikan gambar uraian vektor dari kasus di atas ! Diketahui : AC = 120 cm = 1,2 m wb = 22 N w = 40 N AB = 90 cm = 0,9 m Ditanya: T = ... ?Denga dalil Pythagoras, di peroleh = √902 + 1202 = 150 Kemudian tinjau batang homogen sebagi benda yang mengalami gaya. Padabatang tersebut terdapat gaya berat balok, berat batang dan tegangan tali dalamarah sumbu Y.Bersaarkan syarat keseimbnagn, dperoleh :∑ = 0 dengan A sebagai orors− ( ) − ( 1 ) + sin ( ) = 0 2−40( 1,2 ) − 22( 0,6) + 90 ( 1,2 ) = 0 150−48 − 13,2 + 0,72 = 00,72 = 61,2 = 61,2 0,72 = 85 Jadi besar tegangan tali BC adalah 85 N@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 28Modul Fisika Kelas XI, KD 3.1 Contoh Soal 2 : Perhatikan gambar berikut ! Dua buah kawat baja digunakan untuk menopang batang horizontal dengan berat 80 Newton dan panjang 2 m. Jika beban seberat 240 N ditempatkan pada jarak 50 cm dari ujung kawat A, Tentukan besar tegangan pada kawat B ! Jawab Perhatikan uraian vektor pada gambar berikut !Kemudian, tinjau batang sebagai benda yang mengalami gaya. Pada batangtersebut, terdapat gaya berat silinder, berat batang, dan tegangan tali dalamarah sumbu y.∑ = 0 , dengan A sebagai poros− ( ) − ( 1 ) + ( ) = 0 2−240( 0,5 ) − 80( 1) + (2 ) = 0−120 − 80 + 2 = 02 = 200 200 = 2 = 100 Jadi tegangan tali pada kawat B adalah 100 N@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 29Modul Fisika Kelas XI, KD 3.1 Contoh Soal 3 : Perhatikan gambar berikut !Sebuah batang homogen AB yang panjangnya 5 m dan massanya 10 kgdisandarkan pada dinding vertikal yang licin. Ujung B terletak di lantai yangkasar 3 m dari dinding. Tentukanlah koefisien gesek lantai µ dengan ujung Bagar batang seimbang. (g = 10 m/s²) Jawab Diketahui: AB= 5 m m = 10 kg g = 10 m/s² w = m . g = 10 x 10 = 100 N Ditanya: µ = ...? Perhatikan gambar analisis gaya berikut.Dengan dalil Phytagoras, jika BC = 3 m, AB = 5 m, makaAC = 4 m.Kemudian, tinjau batang homogen sebagai benda yang mengalami gaya.Pada batang tersebut, terdapat gaya normal A dan gaya gesek B dalamarah sumbu X. Adapun gaya berat batang dan gaya normal B berada dalamarah sumbu Y.@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 30Modul Fisika Kelas XI, KD 3.1Syarat kesetimbangan∑ = 0 , ( 1− ( ) + ) = 0 2 1− ( 4) + 100 ( 2 3) = 0−4 + 150 = 04 = 150 150 = 37,5 = 4∑ = 0 , − = 0 = = 100 ∑ = 0 , − = 0 − = 0 = = = 37,5 = 0.375 100Jadi, nilai koefisien gesek antara lantai dengan ujung B agar batang seimbangadalah 0,375.2. Titik Berat Benda Sebuah benda terdiri atas partikel-partikel atau bagian yang masing-masing mempunyai berat. Resultan dari semua berat itu disebut berat benda. Resultan ini bekerja melalui suatu titik tunggal (titik tangkap) yang disebut titik berat (pusat gravitasi). Pada umumnya, untuk benda yang ukurannya tidak terlalu besar, titik berat berimpit dengan pusat massanya. Titik berat benda adalah titik tangkap gaya berat suatu benda, di mana titik tersebut dipengaruhi oleh medan gravitasi. Penentuan letak titik berat ini dapat dilakukan dengan mudah apabila benda bersifat homogen dan beraturan (seperti kubus, bola, dan silinder). Titik pusat massa adalah titik yang mewakili posisi benda jika dianggap sebagai suatu titik materi. Perhatikan gambar di bawah ini yang menggambarkan titik berat dari setiap partikel dalam suatu benda tegar@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 31Modul Fisika Kelas XI, KD 3.1 Koordinat { 0, 0} suatu titik berat (w) benda tegar dapat ditentukan dengan rumusan sebagai berikut ! a. Benda berdimensi satu (berupa garis L) Titik berat benda homogen berbentuk garis untuk beberapa benda dapat dilihat pada tabel berikut :@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 32Modul Fisika Kelas XI, KD 3.1 b. Benda berdimensi dua (berupa luasan bidang A) Titik berat benda homogen berbentuk luasan bidang untuk beberapa benda dapat dilihat pada tabel berikut :@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 33Modul Fisika Kelas XI, KD 3.1 c. Benda berdimensi tiga (berupa ruang volume V) Titik berat benda homogen berbentuk ruang (volume) untuk beberapa benda dapat dilihat pada tabel berikut :@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 34Modul Fisika Kelas XI, KD 3.1Contoh Soal 4 :Perhatikan gambar bidang berikut !Tentukan koordinat titik berat benda tegar yang berbentuk bidang di atas ! Jawab@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 35Modul Fisika Kelas XI, KD 3.1Jadi koordinat titik berat pada bidang di atas adalah {0,2 ; 3}C. RangkumanDari hasil pemaparan tentang Keseimbangan Benda Tegar dapat ditulis beberaparangkuman, yaitu :1. Syarat suatu benda tegar mengalami keseimbangan statis adalah :∑ = 0 dan ∑ = 02. Setiap partikel dalam suatu benda tegar memiliki berat. Berat keseluruhan benda adalah resultan dari semua gaya gravitasi berarah vertikal ke bawah dari semua partikel ini, dan resultan ini bekerja melalui suatu titik tunggal, yang disebut titik berat (atau pusat gravitasi).3. Titik berat dari setiap partikel dalam suatu benda tegar dapat digambarkan sebagai berikutD. Penugasan MandiriTujuan : Menentukan letak titik berat suatu bendaAlat dan Bahan : Tiang penggantung, seutas benang, sebuah beban untuk menarik lurus benang, sebuah karton tebal dengan bentuk sembarang, sebuah jarum pentul, dan sebuah pensil.Langkah Kerja :1. Siapkan karton tebal berbentuk sembarang, sebuah benang yang ujungnya diberikan beban sebagai pengukur tegak lurus, dan tiang untuk menggantungkan tali (benang).@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 36Modul Fisika Kelas XI, KD 3.12. Ikat jarum pentul pada salah satu ujung benang yang sudah diberi beban, dan tancapkan pada setiap sudut sisi-sisi pada karton yang akan dicari titik berat nya. Jangan lupa tarik garis putus-putus dengan menggunakan pensil pada karton sepanjang kedudukan benang pengukur yang tegak lurus3. Kemudian cari perpotongan garis putus-putus tersebut dari ke-empat kejadian di atas, dan titik perpotongan tersebut merupakan titik berat dari karton tersebut, kemudian ukur koordina titik berat dengan menggunakan penggaris (x0 , y0) 4. Lakukan pencarian perhitungan titik berat karton tersebut secara teori (konseptual) kemudian bandingkan dengan hasil secara praktek. Jika kedua nya sesuai maka apa yang Ananda kerja adalah sudah benar.E. Latihan Soal1. Bayu yang bermassa 50 kg dan adik perempuannya Ani yang bermassa 40 kg sedang bermain papan jungkitan yang panjangnya 4 meter dan massanya 5 kg, seperti terlihat pada gambar di bawah ini@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 37Modul Fisika Kelas XI, KD 3.1Tentukan dimanakah posisi Bayu diukur dari pusat rotasi agar sistem papanjungkitan dalam keadaan seimbang (g = 10 m/s2)2. Perhatikan gambar berikut ! Gambar di samping merupakan susunan benda pejal, yang terditi atas silinder pejal yang di atasnya ditumpuk dengan kerucut pejal. Tentukan koordinat titik berat tumbukan benda tersebuk terhadap titik O.3. Sebuah benda bermassa m terletak seperti gambar di bawah ini Jika percepatan gravitasi adalah g, tentukan besar gaya mendatar minimum F yang cukup untuk mengangkat roda di atas lantai (nyatakan dalam m, g, h dan R)PEMBAHASANSolusi Soal Nomor 1DiketahuiBerat Ani = . = 40 . 10 = 400 Berat Bayu = . = 50 . 10 = 500 Berat Papan = . = 5 . 10 = 50 Panjang papan L = 4 meterAgar sistem jungkitan dalam keadaan seimbang, dalam hal ini seimbang rotasi, makaberlaku :∑ = 0 + = 0( . ) + (− . ) = 0( . ) = ( . )(2 . 400) = ( . 500)@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 38Modul Fisika Kelas XI, KD 3.1 = 800 = , 500Jadi, agar sistem jungkitan dalam keadaan seimbang, maka Bayu harus berada pada posisi1,6 meter dari pusat rotasiSolusi Soal Nomor 2Perhatikan gambar berikut ! 1 = 1 × 10 = 5 2 1 2 = 5 + (4 × 9) = 7,25 1 = 2 = × 52 × 10 = 250 3 2 = 1 2 = 1 × × 52 × 9 = 75 3 3 3Jadi titik bera tumpukan benda tesebut pada sumbu y dapat divari : = 1 1+ 2 2 1 + 2 = (5 ×250 )+ (7,25 ×75 ) 325 = (1250)+ (543,75) 325 = 1793,75 325 = , Jadi titik koordinat benda tegar yang bertumpuk sesuai kasus terhadap titik O adalah (xpm ,ypm) dan di peroleh (0 ; 5,52) cmSolusi Soal Nomor 3Pertama-tama Ananda harus menggambar dan menganalisis uraian vektor pada sistembenda tersebut, sehingga diperoleh sebagai berikut.@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 39Modul Fisika Kelas XI, KD 3.1Jadi besar gaya minimum untuk mengangkat roda dari atas lantai adalah : = . √ − ( − )F. Penilain Diri Isilah pertanyaan pada tabel di bawah ini sesuai dengan yang kalian ketahui, berilah penilaian secara jujur, objektif, dan penuh tanggung jawab dengan memberi tanda pada kolom Jawaban. No Pertanyaan Jawaban Ya Tidak 1 Apakah Ananda memahami konsep dan syarat terjadinya keseimbangan statis pada Benda Tegar ? 40 2 Apakah Ananda mengetahui dan memahami konsep- konsep titik berat suatu benda dan aplikasinya? 3 Apakah Ananda mampu memahami dan menganalisa contoh-contoh soal dan latihan soal yang diberikan telah diberikan tentang konsep Keseimbangan Benda Tegar dan Titik Berat suatu benda tegar? Jumlah@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMENModul Fisika Kelas XI, KD 3.1 Catatan: • Jika ada jawaban “Tidak” maka segera lakukan review pembelajaran. • Jika semua jawaban “Ya” maka Anda dapat melanjutkan kegiatan Pembelajaran berikutnya@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 41Modul Fisika Kelas XI, KD 3.1 EVALUASI1. Berikut adalah variabel-variabel berikut ! I. Massa benda II. Ukuran benda III. Sumbu rotasi IV. Kecepatan sudut Yang mempengaruhi momen inersia suatu benda yang berputar adalah variabel... A. I dan III B. II dan IV C. III dan IV D. I, II dan III E. II, III, dan IV2. Sebuah batang yang diabaikan massanya dipengaruhi tiga buah gaya Besar FA = FC = 10 N dan FB = 20 N seperti gambar. Jika jarak AB = BC = 20 cm, maka besar momen gaya terhadap titik C adalah.. A. 0 B. 1 N.m C. 4 N.m D. 6 N.m E. 8 N.m3. Bola pejal ( = 2 2) dengan massa 2,5 kg dan menggelinding sempurna pada 5 bidang datar. Jika kelajuan linier bola pejal tersebut adalah 6 m/s, maka energi kinetik total nya adalah.. A. 63 Jolue B. 75 Joule C. 90 Joule D. 126 Joule E. 135 Joule4. Tersedia dua bidang miring identik, Bidang yang pertama permukaan miringnya kasar, sedangkan bidang yang kedua permukaaan miringnya licin. Dalam percobaan pertama bola pejal dengan jari-jari R dilepaskan dari puncakbidang miring yang kasar, sedangkan dalam percobaan yang kedua bola pejal tersebut dilepaskan pada bidang miring yang licin. Rasio kelajuan bola didasar bidang miring dalam percobaan pertama dan percobaan kedua adalah... ( = 2 2) 5@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 42Modul Fisika Kelas XI, KD 3.1 A. 1 B. √45 C. √2 7 D. √23 E. √5 75. Perhatikan rangkaian sistem berikut ! Sebuah katrol kasar dan berotasi bermassa M = 2 kg ( = 1 2) menghubungkan 2 kedua benda m1 =1 kg dan m2 = 3 kg. Jika lntai licin dan g = 10 m/s2, maka besar percepatan linier yang dialami sistem tersebut adalah.... A. 1,0 m/s2 B. 1,5 m/s2 C. 2,0 m/s2 D. 2,5 m/s2 E. 3,0 m/s26. Sebuah piringan dengan massa 200 gram berputar dengan kecepatan sudut 90 rpm. Piringan lain dijatuhkan tepat di atas piringan pertama sehingga keduanya berputar dengan kecepatan yang sama.Jika jari-jari masing-masing piringan tersebut adalah 20 cm, maka kecepatan sudutkedua piringan setelah keduanya bergabung adalah...A. 2 rad/s C. 3 rad/s E. 5 rad/s 3 2 2B. 3 rad/s D. 4 rad/s 4 37. Batang homogen AB memiliki berat 120 Newton dalam keadaaan setimbang. Jika pada ujung batang diberi beban 45 Newton. Maka besar tegangan tali pada sistem tersebut adalah... A. 87,5 √3 Newton B. 117,5√3 Newton C. 137,5√3 Newton D. 262,5√3 Newton E. 352,5√3 Newton@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 43Modul Fisika Kelas XI, KD 3.18. Sebuah tangga dengan panjang 5 m dan memiliki berat 100 N bersandar pada dinding licin seperti pada gambar. Koefisien gesek antara lantai dan tangga adalah 0,5 Seseorang yang beratnya 500 N memanjat tangga diatas, maka jarak terjauh sebelum tangga tepat akan tergelincir adalah ... A. 1,50 meter B. 1,75 meter C. 2,25 meter D. 2,50 meter E. 3,00 meter9. Perhatikan gambar bangun berikut ini Letak titik berat bidang homogen yang diarsir terhadap sumbu x adalah .... A. 4,0 cm B. 3,5 cm C. 3,0 cm D. 2,5 cm E. 2,0 cm10. Perhatikan gambar benda berikut !Sebuah benda pejal bermassa M dalam keadaan diam, seperti tampak pada gambar disamping. Maka perbandingan gaya normal yang bekerja di titik P dan S adalah....A. 1 ∶ 3B. 3 ∶ 1C. 1 ∶ √3D. √3 ∶ 1E. √3 ∶ 3@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 2Modul Fisika Kelas XI, KD 3.1 KUNCI JAWABAN SOAL EVALUASI 1. D 2. A 3. A 4. E 5. C 6. C 7. A 8. B 9. E 10. D@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 3Modul Fisika Kelas XI, KD 3.1 DAFTAR PUSTAKAKanginan, Marthen. 2017. Fisika Untuk SMA/MA Kelas XI. Jakarta: Penerbit Erlangga.Kanginan, Marthen. 2008. Seribu Pena Fisika SMA/MA Kelas XI. Jakarta: Penerbit Erlangga.Lasmi, Ni Ketut. 2015. Seri Pendalaman Materi (SPM) Fisika. Bandung: Penerbit EsisSears, Zemansky. 1994. Fisika Untuk Universitas 2 (Terjemahan). Bandung: Penerbit Binacipta.Surya, Yohanes.1996. Olimpiade Fisika SMU Caturwulan Kedua Kelas 2. Jakarta: Penerbit PT Primatika Cipta Ilmu.

@2020, Direktorat SMA, Direktorat Jenderal PAUD, DIKDAS dan DIKMEN 4