Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Postingan ini membahas contoh soal persamaan parabola dan pembahasannya atau penyelesaiannya. Parabola adalah himpunan semua titik yang berjarak sama terhadap sebuah titik tertentu atau fokus dan sebuah garis tertentu yang dinamakan direktriks.

Persamaan parabola terbuka ke kanan atau ke kiri

(y – b)2 = ± 4p (x – a) Keterangan: 4p = panjang latus rectum(a, b) disebut koordinat titik puncak (a ± p, b) disebut titik fokus

Tanda (+) digunakan jika parabola terbuka ke kanan dan (-) jika parabola terbuka ke kiri.

Persamaan parabola terbuka ke atas atau ke bawah

(x – a)2 = ± 4p (y – b) Keterangan: 4p = panjang latus rectum (a, b) disebut koordinat titik puncak(a, b ± p) disebut titik fokus

tanda (+) digunakan jika parabola terbuka ke atas dan (-) jika parabola terbuka ke bawah.

Persamaan umum parabola

Dibawah ini adalah persamaan parabola yang diperoleh dari penjabaran persamaan parabola (y – b)2 = 4p (x – a):
y2 + Ax + By + C = 0 Keterangan: A = – 4p B = – 2b

C = b2 – 4pa

Untuk lebih jelasnya perhatikan contoh soal persamaan parabola dan pembahasannya dibawah ini.

Contoh soal 1

Tentukan titik puncak, titik fokus, persamaan sumbu simetri dan direktriks persamaan parabola y2 = 8x.

Pembahasan / penyelesaian soal

Persamaan parabola yang pertama dapat ditulis dengan persamaan (y – 0)2 = 8 (x – 0)2. Berdasarkan persamaan tersebut kita ketahui:

  • Parabola terbuka ke kanan
  • a = 0
  • b = 0
  • 4p = 8 atau p = 8/4 = 2

Dengan demikian diperoleh:

  • titik puncak (a , b) = (0, 0)
  • titik fokus f(a + p, b) = f(0 + 2, 0) = f(2, 0).
  • Persamaan sumbu simetri y = b atau y = 0
  • Persamaan direktriks y = a – p = 0 – 2 = -2

Contoh soal 2

Tentukan titik puncak, titik fokus, persamaan sumbu simetri dan direktriks persamaan parabola (x – 2)2 = – 12 (y – 4)

Pembahasan / penyelesaian soal

Berdasarkan persamaan parabola diatas diketahui:

  • Parabola terbuka ke bawah
  • a = 2
  • b = 4
  • -4p = -12 atau p = -12/-4 = 3

Berdasarkan data tersebut diperoleh:

  • Titik puncak (a, b) = (2, 4)
  • Titik fokus = (a, b – p) = (2, 4 – 3) = (2, 1)
  • Persamaan sumbu simetri x = a atau x = 2
  • Direktriks y = b + p = 4 + 3 = 7

Contoh soal 4

Tentukan titik puncak, persamaan sumbu simetri, koordinat titik fokus persamaan parabola y2 – 16x – 8y – 16 = 0.

Pembahasan / penyelesaian soal

Pada soal ini diketahui:

Dengan demikian diperoleh:

  • A = -4p = -16 atau p = 16/4 = 4
  • B = -2b = – 8 atau b = -8/-2 = 4
  • C = b

    2

    – 4pa = -4 atau 4

    2

    – 4 . 4 . a = -16
  • 16 a = 16 + 16 = 32 atau a = 32/16 = 2

a = 2, b = 4 dan p = 4 sehingga didapat:

  • Koordinat titik puncak = (a, b) = (2, 4)
  • Koordinat titik fokus = (a + p, b) = (2 + 4, 4) = (6 , 4)
  • Persamaan sumbu simetri y = b atau y = 4
  • Direktriks x = a – p = 2 – 4 = -2

Contoh soal 3

Tentukan persamaan parabola dengan titik puncak (0, 0) dan titik fokus (3 , 0).

Pembahasan / penyelesaian soal

Berdasarkan soal diatas diketahui:

Dengan demikian persamaan parabola (y – b)2 = 4p (x – a) atau (y – 0)2 = 4 . 3 (x – 0) atau y2 = 12x.

Contoh soal 4

Koordinat titik fokus parabola dengan persamaan (x + 2)2 = -8 (y – 3) adalah…

Pembahasan / penyelesaian soal

Pada soal ini diketahui:

  • Parabola terbuka ke bawah
  • a = – 2
  • b = 3
  • -4p = -8 atau p = 2

Jadi titik fokus parabola = (a, b – p) = (-2, 3 – 2) = (-2, 1).

Contoh soal 5

Persamaan parabola dengan titik puncak (1, -2) dan titik fokus (5, -2) adalah…

Pembahasan / penyelesaian soal

Pada soal ini diketahui:

  • a = 1
  • b = -2
  • a + p = 5 atau p = 5 – a = 5 – 1 = 4

Karena b pada titik puncak dan titik fokus sama dan p positif maka parabola ini terbuka ke kanan dengan persamaan sebagai berikut:

  • (y – b)

    2

    = 4p (x – a)
  • (y – (-2))

    2

    = 4 . 4 (x – 1)
  • y

    2

    + 4y + 4 = 16x – 16
  • y

    2

    + 4y – 16x + 20 = 0

Contoh soal 6

Persamaan parabola yang berpuncak pada titik (2, 4) dan titik fokus (5, 4) adalah…

Pembahasan / penyelesaian soal

Diketahui:

  • a = 2
  • b = 4
  • a + p = 5 atau p = 5 – a = 5 – 2 = 3

Jadi persamaan parabola sebagai berikut:

  • (y – b)

    2

    = 4p (x – a)
  • (y – 4)

    2

    = 4 . 3 (x – 2)
  • (y – 4)

    2

    = 12 (x – 2)

Contoh soal 7

Persamaan garis singgung pada parabola y2 = 8x yang tegak lurus garis 2x + 3y – 6 = 0 adalah…

Pembahasan / penyelesaian soal

Gradien dari garis 2x + 3y – 6 = 0 adalah m

2

= –
Karena tegak lurus berlaku m

1

. m

2

= -1 atau m

1

= = = 3/2
Persamaan garis singgung y = mx +
y = 3/2 x + (dikali 6)
6y = 9x + 8 atau 9x – 6y + 8 = 0

Itulah contoh soal persamaan parabola dan pembahasannya. Semoga postingan ini bermanfaat.

Seperti pada elips dan hiperbola, banyak sekali aplikasi parabola yang bertumpu pada definisi analitisnya daripada bentuk aljabarnya. Aplikasi-aplikasi tersebut, misalkan pembangunan teleskop radio dan perusahaan lampu senter, menggunakan definisi analitis parabola dalam penentuan lokasi fokus dari parabola tersebut. Berikut ini definisi analitis dari suatu parabola.

Definisi Parabola
Diberikan suatu titik tertentu f dan garis tertentu D dalam bidang, suatu parabola adalah himpunan semua titik (x, y) sedemikian sehingga jarak antara f dan (x, y) sama dengan jarak antara D dan (x, y). Titik f disebut sebagai fokus parabola dan garis D disebut sebagai direktriks.

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Persamaan umum dari suatu parabola dapat diperoleh dengan mengkombinasikan definisi di atas dan rumus jarak. Dengan tidak mengurangi keumuman, kita dapat menganggap parabola yang ditunjukkan pada gambar di atas memiliki titik puncak di (0, 0) dan memiliki titik fokus di (0, p). Seperti yang ditunjukkan oleh gambar di bawah, parabola yang dimaksud memiliki direktriks dengan persamaan y = –p , sehingga semua titik pada D dapat dituliskan sebagai (x, –p).

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Dengan menggunakan rumus jarak dan menerapkan definisi bahwa d1 = d2, kita mendapatkan,

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Persamaan terakhir di atas disebut persamaan bentuk fokus-direktriks dari suatu parabola vertikal dengan titik puncak di (0, 0). Jika parabola di atas diputar sehingga terbuka ke kanan, maka kita akan mendapatkan suatu parabola horizontal dengan titik puncak di (0, 0), dan persamaannya adalah y² = 4px.

Persamaan Parabola dalam Bentuk Fokus-Direktriks Suatu parabola vertikal memiliki persamaan dalam bentuk fokus-direktriks: x² = 4py, yang memiliki fokus di (0, p) dan dengan direktriks: y = –p. Jika p > 0, parabola tersebut akan terbuka ke atas. Jika p < 0, parabola tersebut akan terbuka ke bawah.

Suatu parabola horizontal memiliki persamaan dalam bentuk fokus-direktriks: y² = 4px, yang memiliki fokus di (p, 0) dan dengan direktriks: x = –p. Jika p > 0, parabola tersebut akan terbuka ke kanan. Jika p < 0, parabola tersebut akan terbuka ke kiri.

Untuk lebih memahami mengenai persamaan suatu parabola dalam bentuk fokus-direktriks, perhatikan contoh berikut.

Contoh 1: Menentukan Fokus dan Direktriks dari suatu Parabola

Tentukan titik puncak, fokus, dan direktris dari parabola yang didefinisikan oleh persamaan x² = –12y. Kemudian gambarkan grafiknya, disertai dengan fokus dan direktrisnya.

Pembahasan Karena hanya suku-x yang dikuadratkan dan tidak ada pergeseran yang diterapkan, maka parabola tersebut merupakan parabola vertikal dengan titik puncak di (0, 0). Dengan membandingkan persamaan yang diberikan dengan persamaan umum parabola bentuk fokus-direktriks kita dapat menentukan nilai p:

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Karena p = –3 (p < 0), maka parabola tersebut terbuka ke bawah, dengan titik fokus di (0, –3) dan direktriksnya y = 3. Untuk menggambar grafiknya, kita perlu beberapa titik tambahan yang dilalui oleh parabola tersebut. Karena 36 = 6² dapat dibagi oleh 12, maka kita dapat mensubstitusikan x = 6 dan x = –6, dan menghasilkan titik-titik (6, –3) dan (–6, –3). Sehingga grafik dari parabola tersebut dapat digambarkan sebagai berikut.

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Dari grafik di atas, kita dapat mengetahui bahwa garis x = 0 merupakan sumbu simetri dari grafik parabola yang diberikan.

Sebagai titik-titik alternatif dalam menggambar grafik parabola, kita dapat menggunakan apa yang disebut tali busur fokus dari parabola. Serupa dengan elips dan hiperbola, tali busur fokus adalah ruas garis yang melalui fokus, sejajar dengan direktriks, dan titik-titik ujungnya terletak pada grafik. Dengan menggunakan definisi dari parabola, jarak horizontal dari f ke (x, y) adalah 2p. Karena d1 = d2, maka ruas garis yang sejajar dengan direktriks dari fokus ke grafik memiliki panjang |2p|, dan panjang tali busur fokus dari sembarang parabola adalah |4p|.

Dan akhirnya, jika titik puncak dari suatu parabola vertikal digeser ke (h, k), maka persamaan dari parabola tersebut akan menjadi (x ± h)2 = 4p(y ± k). Seperti pada keluarga irisan kerucut lainnya, pergeseran vertikal dan horizontalnya berlawanan dengan tandanya (positif atau negatif).

Contoh 2: Menentukan Fokus dan Direktriks dari suatu Parabola

Tentukan titik puncak, fokus, dan direktriks dari persamaan parabola yang diberikan, kemudian gambarkan grafiknya, disertai dengan fokus dan direktriksnya: x² – 6x + 12y – 15 = 0.

Pembahasan Karena hanya suku-x yang dikuadratkan, maka grafik dari persamaan tersebut berbentuk parabola vertikal. Untuk menentukan kecekungan, titik puncak, fokus, dan direktriks, kita terlebih dulu melengkapkan kuadrat dalam x dan membandingkannya dengan persamaan bentuk fokus-direktriks dengan pergeseran.

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Dari persamaan yang dihasilkan, kita dapat melihat bahwa grafiknya merupakan suatu parabola yang digeser ke kanan sejauh 3 satuan dan ke atas sejauh 2 satuan. Oleh karena itu, semua unsur dari parabola tersebut juga akan bergeser. Karena kita mendapatkan 4p = –12, maka p = –3 (p < 0) dan parabola tersebut terbuka ke bawah. Jika parabola tersebut berada pada posisi biasa, maka titik puncaknya akan di (0, 0), fokusnya di (0, –3), dan direktriksnya y = 3. Karena parabola tersebut bergeser ke kanan sejauh 3 satuan dan ke atas sejauh 2 satuan, maka kita harus menambahkan nilai x dengan 3 dan nilai y dengan 2 dari semua unsur parabola tersebut. Sehingga titik puncaknya akan berada di (0 + 3, 0 + 2) = (3, 2), fokusnya pada (0 + 3, –3 + 2) = (3, –1), dan direktriksnya adalah y = 3 + 2 = 5. Dan akhirnya, jarak horizontal antara fokus dan grafik adalah |2p| = 6 satuan (karena |4p| = 12), sehingga memberikan titik-titik tambahan yang dilalui grafik, yaitu (–3, –1) dan (9, –1).

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Dalam banyak kasus, kita perlu untuk menentukan persamaan dari parabola ketika hanya beberapa informasi yang diketahui, seperti yang dicontohkan oleh contoh 3 berikut.

Contoh 3: Menentukan Persamaan dari suatu Parabola

Tentukan persamaan dari parabola yang memiliki titik puncak (4, 4) dan fokus (4, 1). Kemudian gambarkan grafiknya dengan menggunakan persamaan dan tali busur fokusnya.

Pembahasan Karena titik puncak dan fokusnya terletak pada garis vertikal, maka parabola yang dimaksud merupakan suatu parabola vertikal yang memiliki persamaan umum (x ± h)² = 4p(y ± k). Jarak p dari fokus ke titik pusat adalah 3 satuan, dan karena fokus berada di bawah titik puncak, maka grafiknya terbuka ke bawah dan p = –3. Dengan menggunakan tali busur fokus, jarak horizontal dari fokus ke grafik adalah |2p| = |2(–3)| = 6, memberikan titik-titik (–2, 1) dan (10, 1). Titik puncaknya digeser 4 satuan ke kanan dan 4 satuan ke atas dari (0, 0), sehingga diperoleh h = 4 dan k = 4. Sehingga persamaan dari parabola tersebut adalah (x – 4)² = –12(y – 4), dengan direktriks y = 7. Grafik dari parabola tersebut dapat digambarkan sebagai berikut.

Persamaan parabola yang berpuncak di. 3,5 dan memiliki direktris x = min 2 adalah

Perhatikan bahwa grafik parabola di atas memiliki sumbu simetri di garis x = 4. Semoga bermanfaat, yos3prens.