How to measure behavior in research

Behavior is a general and universal thing. To state it simply: behavior is the way a person or animal acts in a particular situation/environment. As ways to behave are numerous and we are a curious species, people have been measuring behavior for centuries now. So, why is measuring behavior awesome? These 3 examples prove it.

Why measuring behavior is awesome

People have been measuring both animal and human behavior for a long time. Behavior is the actions and mannerisms made by individuals, organisms, systems or artificial entities in conjunction with themselves or their environment. It is the computed response of the system or organism to various stimuli or inputs, whether internal or external, conscious or subconscious, overt or covert, and voluntary or involuntary.[1]

Measuring these behaviors can give amazing insights. Some examples that show why it is so interesting to measure it.

1. It can change behavior for the good

Remember that movie clip of people taking the escalator instead of the stairs next to it, until they transformed the stairs into one giant piano? It led to an impressive 66% increase in people taking the stairs instead of the escalator that day. They changed their behavior for the better, because they were triggered by something fun, rather than alarming news articles on our declining health.

Although this experiment was not scientifically conducted, it does show that the changing human behavior and measuring the results is something everyone can relate to.

2. It can involve anything and anyone

Why one person behaves a certain way and someone else can act completely the opposite way has been the subject of studies for ages. It’s not just human behavior that is that scientists find worthwhile studying; the study of animal behavior – or ethology - goes back as far as Charles Darwin and American and German ornithologists of the late 19th and early 20th century. The modern discipline of ethology is generally considered to find its roots in the work of Dutch biologist Nikolaas Tinbergen.

Without behavioral research we would have never known the Pavlov effect, why wolves howl, or more recently, the “Science of the Resting Bitch Face”, where facial expression analysis made it possible to discover why so many people – especially women – seem to suffer from a social phenomenon that labels them as bitchy, solely based on their expression.

3. It can bring people from different disciplines together

One way for behavioral research to get its limelight are the numerous conferences dedicated to the measuring of behavior, with Measuring Behavior as the ultimate conference bringing it all together in one meeting. This unique conference focuses on methods, techniques and tools in behavioral research in the widest sense.

While most conferences focus on a specific scientific area, this conference tries to create bridges between disciplines by bringing together people who may otherwise be unlikely to meet each other, with measuring behavior as the binding factor. 

Meeting researchers from other disciplines teaches you to combine different perspectives and establish links as a way of analyzing problems. During the upcoming Measuring Behavior conference in Krakow, Poland (18-20 May 2022), you’ll see dozens of examples on measuring a multitude of behaviors. This could be shopper behavior at airports, cows in a stall, drivers in vehicles, and players on the field and online. Measuring Behavior includes discussion on observing all of those behaviors, and more, from both humans and animals.

Reference

1. https://en.wikipedia.org/wiki/Behavior

How to measure behavior in research

PRODUCT OVERVIEW: Behavioral research solutions

Download our free product overview and find out which Noldus products are suitable for your research.

  • Divided into research areas
  • Find the solution for your research
  • Trust our 30 years of experience

Read more about measuring behavior:

What are the best examples of measuring behavior you encountered?

  1. Anderson DJ, Perona P. Toward a Science of Computational Ethology. Neuron. 2014; 84(1):18–31.

    CAS  PubMed  Article  Google Scholar 

  2. Krakauer JW, Ghazanfar AA, Gomez-Marin A, Maciver MA, Poeppel D. Neuroscience Needs Behavior: Correcting a Reductionist Bias. Neuron. 2017; 93(3):480–90.

    CAS  PubMed  Article  Google Scholar 

  3. Wang XJ, Krystal JH. Computational psychiatry. Neuron. 2014; 84(3):638–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to Neuroprostheses and Neurorehabilitation. Physiol Rev. 2017; 97(2):767–837.

    PubMed  Article  Google Scholar 

  5. Anderson PW. More Is Different. Science. 1972; 177(4047):393–6.

    CAS  PubMed  Article  Google Scholar 

  6. Goldenfeld N, Kadanoff LP. Simple Lessons from Complexity. Science. 1999; 284(5411):87–9.

    CAS  PubMed  Article  Google Scholar 

  7. Dell AI, Bender JA, Branson K, Couzin ID, De Polavieja GG, Noldus LPJJ, et al.Automated image-based tracking and its application in ecology. Trends Ecol Evol. 2014; 29(7):417–28.

    PubMed  Article  Google Scholar 

  8. Egnor SER, Branson K. Computational Analysis of Behavior. Ann Rev Neuro. 2016; 39:217–36.

    CAS  Article  Google Scholar 

  9. Robie AA, Seagraves KM, Egnor SER, Branson K. Machine vision methods for analyzing social interactions. J Exp Bio. 2017; 220(1):25–34.

    Article  Google Scholar 

  10. Calhoun AJ, Murthy M. Quantifying behavior to solve sensorimotor transformations: advances from worms and flies. Curr Opin Neurobiol. 2017; 46:90–8.

    CAS  PubMed  Article  Google Scholar 

  11. Stephens GJ, Osborne LC, Bialek W. Searching for simplicity in the analysis of neurons and behavior. Proc Nat Acad Sci. 2011; 108(Supp 3):15565–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci. 2014; 17(11):1455–62.

    CAS  PubMed  Article  Google Scholar 

  13. Montague PR, Dolan RJ, Friston KJ, Dayan P. Computational psychiatry. Trends Cogn Sci. 2012; 16(1):72–80.

    PubMed  Article  Google Scholar 

  14. Anderson DJ, Adolphs R. A Framework for Studying Emotions across Species. Cell. 2014; 157(1):187–200.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Anderson DJ. Circuit modules linking internal states and social behaviour in flies and mice. Nature Rev Neuro. 2016; 17(11):692–704.

    CAS  Article  Google Scholar 

  16. Huys QJM, Maia TV, Frank MJ. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci. 2016; 19(3):404–13.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Stephan KE, Mathys C. Computational approaches to psychiatry. Curr Opin Neurobiol. 2014; 25:85–92.

    CAS  PubMed  Article  Google Scholar 

  18. Leshner A, Pfaff DW. Quantification of behavior. Proc Nat Acad Sci. 2011; 108(Supp 3):15537–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Fonio E, Golani I, Benjamini Y. Measuring behavior of animal models: faults and remedies. Nat Methods. 2012; 9(12):1167–70.

    CAS  PubMed  Article  Google Scholar 

  20. Altmann J. Observational study of behavior: sampling methods. Behaviour. 1974; 49(3):227–67.

    CAS  PubMed  Article  Google Scholar 

  21. Martin P, Bateson P. Measuring behaviour: an introductory guide. Cambridge. UK: Cambridge University Press; 2007.

    Book  Google Scholar 

  22. Gao P, Ganguli S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr Opin Neurobiol. 2015; 32:148–55.

    CAS  PubMed  Article  Google Scholar 

  23. Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002; 417(6886):329–35.

    CAS  PubMed  Article  Google Scholar 

  24. Yemini E, Jucikas T, Grundy LJ, Brown AEX, Schafer WR. A database of Caenorhabditis elegans behavioral phenotypes. Nat Methods. 2013; 10(9):877–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Churgin MA, Jung SK, Yu CC, Chen X, Raizen DM, Fang-Yen C, et al.Longitudinal imaging of Caenorhabditis elegans in a microfabricated device reveals variation in behavioral decline during aging. eLife. 2017; 6:e26652.

    PubMed  PubMed Central  Article  Google Scholar 

  26. Ayroles JF, Buchanan SM, O’Leary C, Skutt-Kakaria K, Grenier JK, Clark AG, et al.Behavioral idiosyncrasy reveals genetic control of phenotypic variability. Proc Nat Acad Sci. 2015; 112(21):6706–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Branson K, Robie AA, Bender JA, Perona P, Dickinson MH. High-throughput ethomics in large groups of Drosophila. Nat Methods. 2009; 6(6):451–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, De Polavieja GG. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat Methods. 2014; 11(7):743–8.

    PubMed  Article  CAS  Google Scholar 

  29. Naumann EA, Fitzgerald JE, Dunn TW, Rihel J, Sompolinsky H, Engert F. From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response. Cell. 2016; 167(4):947–960.e20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Orger MB, De Polavieja GG. Zebrafish Behavior: Opportunities and Challenges. Ann Rev Neuro. 2017; 40:125–147.

    CAS  Article  Google Scholar 

  31. Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P. Automated monitoring and analysis of social behavior in Drosophila. Nat Methods. 2009; 6(4):297–303.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat Methods. 2013; 10(1):64–7.

    CAS  PubMed  Article  Google Scholar 

  33. de Chaumont F, Coura RDS, Serreau P, Cressant A, Chabout J, Granon S, et al.Computerized video analysis of social interactions in mice. Nat Methods. 2012; 9(4):410–7.

    CAS  PubMed  Article  Google Scholar 

  34. Kain J, Stokes C, Gaudry Q, Song X, Foley J, Wilson R, et al.Leg-tracking and automated behavioural classification in Drosophila. Nat Communications. 2013; 4:1910.

    Article  CAS  Google Scholar 

  35. Hong W, Kennedy A, Burgos-Artizzu XP, Zelikowsky M, Navonne SG, Perona P, et al.Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc Nat Acad Sci. 2015; 112(38):E5351–E5360.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Dickinson MH, Farley CT, Full RJ, Koehl MAR, Kram R, Lehman S. How Animals Move: An Integrative View. Science. 2000; 288(5):100–6.

    CAS  PubMed  Article  Google Scholar 

  37. Childress S, Hosoi A, Schultz WW, Wang ZJ, (eds).Natural locomotion in fluids and on surfaces: swimming, flying, and sliding. New York: Springer; 2012.

    Google Scholar 

  38. Holmes P, Full RJ, Koditschek D, Guckenheimer J. The Dynamics of Legged Locomotion: Models, Analyses, and Challenges. SIAM Rev. 2006; 48:207–304.

    Article  Google Scholar 

  39. Miller LA, Goldman DI, Hedrick TL, Tytell ED, Wang ZJ, Yen J, et al.Using computational and mechanical models to study animal locomotion. Int Comp Bio. 2012; 52(5):553–75.

    Article  Google Scholar 

  40. McInroe B, Astley HC, Gong C, Kawano SM, Schiebel PE, Rieser JM, et al.Tail use improves soft substrate performance in models of early vertebrate land locomotors. Science. 2016; 353(6295):154–8.

    CAS  PubMed  Article  Google Scholar 

  41. Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B, Mazouchova N, et al. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. Rep Prog Phys. 2016; 79(11):110001.

    PubMed  Article  Google Scholar 

  42. Dickinson MH, Lehmann FO, Sane SP. Wing rotation and the aerodynamic basis of insect flight. Science. 1999; 284(5422):1954–60.

    CAS  PubMed  Article  Google Scholar 

  43. Cowan NJ, Ankarali MM, Dyhr JP, Madhav MS, Roth E, Sefati S, et al.Feedback control as a framework for understanding tradeoffs in biology. Integr Comp Biol. 2014; 54(2):223–37.

    PubMed  Article  Google Scholar 

  44. Roth E, Sponberg S, Cowan NJ. A comparative approach to closed-loop computation. Curr Opin Neurobiol. 2014; 25:54–62.

    CAS  PubMed  Article  Google Scholar 

  45. Alexander RM. Optima for Animals. Princeton, NJ: Princeton University Press; 1996.

    Google Scholar 

  46. Full RJ, Koditschek DE. Templates and anchors: Neuromechanical hypotheses of legged locomotion on land. J Exp Bio. 1999; 202(23):3325–32.

    CAS  Google Scholar 

  47. Monty Python’s FlyingCircus. “The Ministry of Silly Walks”. BBC. 1970;2(1).

  48. Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, et al.Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proc Nat Acad Sci. 2010; 107(11):4820–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Jindrich DL, Full RJ. Dynamic stabilization of rapid hexapedal locomotion. J Exp Bio. 2002; 205(18):2803–23.

    Google Scholar 

  50. Revzen S, Guckenheimer JM. Finding the dimension of slow dynamics in a rhythmic system. J Royal Soc Interface. 2012; 9(70):957–71.

    Article  Google Scholar 

  51. Osborne LC, Lisberger SG, Bialek W. A sensory source for motor variation. Nature. 2005; 437(7057):412–6.

    CAS  PubMed  Article  Google Scholar 

  52. Stephens GJ, de Mesquita MB, Ryu WS, Bialek W. Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans. Proc Nat Acad Sci. 2011; 108(18):7286–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. Berman GJ, Choi DM, Bialek W, Shaevitz JW. Mapping the stereotyped behaviour of freely moving fruit flies. J Royal Soc Interface. 2014; 11(99):20140672.

    Article  Google Scholar 

  54. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. Dimensionality and dynamics in the behavior of C. elegans. PLoS Comp Bio. 2008; 4(4):e1000028.

    Article  CAS  Google Scholar 

  55. Brown AEX, Yemini EI, Grundy LJ, Jucikas T, Schafer WR. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. Proc Nat Acad Sci. 2013; 110(2):791–6.

    CAS  PubMed  Article  Google Scholar 

  56. Wiltschko AB, Johnson MJ, Iurilli G, Peterson RE, Katon JM, Pashkovski SL, et al.Mapping Sub-Second Structure in Mouse Behavior. Neuron. 2015; 88(6):1121–35.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Kato S, Kaplan HS, Schrödel T, Skora S, Lindsay TH, Yemini E, et al.Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans. Cell. 2015; 163(3):656–669.

    CAS  PubMed  Article  Google Scholar 

  58. Todd JG, Kain JS, de Bivort BL. Systematic exploration of unsupervised methods for mapping behavior. Phys Biol. 2017; 14(1):015002.

    PubMed  Article  Google Scholar 

  59. Klibaite U, Berman GJ, Cande J, Stern DL, Shaevitz JW. An unsupervised method for quantifying the behavior of paired animals. Phys Biol. 2017; 14(1):015006.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Nagy S, Goessling M, Amit Y, Biron D. A Generative Statistical Algorithm for Automatic Detection of Complex Postures. PLoS Comp Bio. 2015; 11(10):e1004517.

    Article  CAS  Google Scholar 

  61. Broekmans OD, Rodgers JB, Ryu WS, Stephens GJ. Resolving coiled shapes reveals new reorientation behaviors in C. elegans. eLife. 2016; 5:e17227.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Nguyen JP, Shipley FB, Linder AN, Plummer GS, Liu M, Setru SU, et al.Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc Nat Acad Sci. 2016; 113(8):E1074–E1081.

    CAS  PubMed  Article  Google Scholar 

  63. Mendes CS, Bartos I, Akay T, Márka S, Mann RS. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife. 2013; e00231:2.

    Google Scholar 

  64. Machado AS, Darmohray DM, Fayad J, Marques HG, Carey MR. A quantitative framework for whole-body coordination reveals specific deficits in freely walking ataxic mice. eLife. 2015; 4:e07892.

    PubMed  PubMed Central  Article  Google Scholar 

  65. Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I. Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J Exp Bio. 2009; 212(9):1324–35.

    Article  Google Scholar 

  66. Fontaine EI, Zabala F, Dickinson MH, Burdick JW. Wing and body motion during flight initiation in Drosophila revealed by automated visual tracking. J Exp Bio. 2009; 212(9):1307–23.

    Article  Google Scholar 

  67. Uhlmann V, Ramdya P, Delgado-Gonzalo R, Benton R, Unser M. FlyLimbTracker: An active contour based approach for leg segment tracking in unmarked, freely behaving Drosophila. PLoS ONE. 2017; 12(4):e0173433.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW, Priebe CE, et al.Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science. 2014; 344(6182):386–92.

    CAS  PubMed  Article  Google Scholar 

  69. Geng W, Cosman P, Baek JH, Berry CC, Schafer WR. Quantitative classification and natural clustering of Caenorhabditis elegans behavioral phenotypes. Genetics. 2003; 165(3):1117–26.

    PubMed  PubMed Central  Google Scholar 

  70. Ghosh R, Mohammadi A, Kruglyak L, Ryu WS. Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol. 2012; 10:85.

    PubMed  PubMed Central  Article  Google Scholar 

  71. Jhuang H, Garrote E, Mutch J, Yu X, Khilnani V, Poggio T, et al.Automated home-cage behavioural phenotyping of mice. Nat Commun. 2010; 1:68.

    PubMed  Article  CAS  Google Scholar 

  72. Golani I, Kafkafi N, Drai D. Phenotyping stereotypic behaviour: collective variables, range of variation and predictability. Appl Anim Behav Sci. 1999; 65(3):191–220.

    Article  Google Scholar 

  73. Bongard J, Lipson H. Automated reverse engineering of nonlinear dynamical systems. Proc Nat Acad Sci. 2007; 104(24):9943–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Natale JL, Hofmann D, Hernández DG, Nemenman I. Reverse-engineering biological networks from large data sets. arXiv. 2017.

  75. Daniels BC, Nemenman I. Automated adaptive inference of phenomenological dynamical models. Nat Commun. 2015; 6(1):8133.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Berman GJ, Bialek W, Shaevitz JW. Predictability and hierarchy in Drosophila behavior. Proc Nat Acad Sci. 2016; 113(42):11943–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Gomez-Marin A, Stephens GJ, Brown AEX. Hierarchical compression of Caenorhabditis elegans locomotion reveals phenotypic differences in the organization of behaviour. J Royal Soc Interface. 2016; 13(121):20160466.

    Article  Google Scholar 

  78. Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AEX. Changes in Postural Syntax Characterize Sensory Modulation and Natural Variation of C. elegans Locomotion. PLoS Comp Bio. 2015; 11(8):e1004322.

    Article  CAS  Google Scholar 

  79. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, et al.Can Ethograms Be Automatically Generated Using Body Acceleration Data from Free-Ranging BirdsPLoS ONE. 2009; 4(4):e5379.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. Debnath L, Shah FA. Wavelet transforms and their applications, 2nd ed. New York: Springer; 2015.

    Book  Google Scholar 

  81. Benjamini Y, Fonio E, Galili T, Havkin GZ, Golani I. Quantifying the buildup in extent and complexity of free exploration in mice. Proc Nat Acad Sci. 2011; 108(Supp 3):15580–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Katz Y, Tunstrom K, Ioannou CC, Huepe C, Couzin ID. Inferring the structure and dynamics of interactions in schooling fish. Proc Natl Acad Sci. 2011; 108(46):18720–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. Novel type of phase transition in a system of self-driven particles. Phys Rev Lett. 1995; 75(6):1226–9.

    CAS  PubMed  Article  Google Scholar 

  84. Toner J, Tu Y. Flocks, herds, and schools: A quantitative theory of flocking. Phys Rev E. 1998; 58(4):4828–58.

    CAS  Article  Google Scholar 

  85. Buhl J, Sumpter D, Couzin ID, Hale J, Despland E, Miller E, et al.From disorder to order in marching locusts. Science. 2006; 312(5778):1402–6.

    CAS  PubMed  Article  Google Scholar 

  86. Haller G. Lagrangian Coherent Structures. Ann Rev Fluid Mech. 2015; 47(1):137–62.

    Article  Google Scholar 

  87. Brunton BW, Johnson LA, Ojemann JG, Kutz JN. Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition. J Neurosci Methods. 2016; 258:1–15.

    PubMed  Article  Google Scholar 

  88. Coen P, Clemens J, Weinstein AJ, Pacheco DA, Deng Y, Murthy M. Dynamic sensory cues shape song structure in Drosophila. Nature. 2014; 507(7491):233–7.

    CAS  PubMed  Article  Google Scholar 

  89. LaRue KM, Clemens J, Berman GJ, Murthy M. Acoustic duetting in Drosophila virilis relies on the integration of auditory and tactile signals. eLife. 2015; 4:e07277.

    PubMed Central  Article  Google Scholar 

  90. Neunuebel JP, Taylor AL, Arthur BJ, Egnor SER. Female mice ultrasonically interact with males during courtship displays. eLife. 2015; e06203:4.

    Google Scholar 

  91. Arthur BJ, Sunayama-Morita T, Coen P, Murthy M, Stern DL. Multi-channel acoustic recording and automated analysis of Drosophila courtship songs. BMC Biol. 2013; 11:11.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Tabler JM, Rigney MM, Berman GJ, Gopalakrishnan S, Heude E, Al-Lami HA, et al.Cilia-mediated Hedgehog signaling controls form and function in the mammalian larynx. eLife. 2017; 6:e19153.

    PubMed  PubMed Central  Article  Google Scholar 

  93. Mets DG, Brainard MS. An Automated Approach to the Quantitation of Vocalizations and Vocal Learning in the Songbird. bioRxiv. 2017.

  94. Van Segbroeck M, Knoll AT, Levitt P, Narayanan S. MUPET–Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations. Neuron. 2017; 94(3):465–85.

  95. Robie AA, Hirokawa J, Edwards AW, Umayam LA, Lee A, Phillips ML, et al. Mapping the Neural Substrates of Behavior. Cell. 2017; 170(2):393–406.e28.

    CAS  PubMed  Article  Google Scholar 

  96. Clemens J, Girardin CC, Coen P, Guan XJ, Dickson BJ, Murthy M. Connecting Neural Codes with Behavior in the Auditory System of Drosophila. Neuron. 2015; 87(6):1332–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Wang NXR, Olson JD, Ojemann JG, Rao RPN, Brunton BW. Unsupervised Decoding of Long-Term, Naturalistic Human Neural Recordings with Automated Video and Audio Annotations. Front Hum Neurosci. 2016; 10(251):78–13.

    Google Scholar 

  98. Billings J, Medda A, Shakil S, Shen X, Kashyap A, Chen S, et al.Instantaneous brain dynamics mapped to a continuous state space. Neuroimage. 2017; 162:344–52.

    PubMed  Article  Google Scholar 

  99. Gepner R, Skanata MM, Mihovilovic Skanata M, Bernat NM, Kaplow M, Gershow M. Computations underlying Drosophila photo- taxis, odor-taxis, and multi-sensory integration. eLife. 2015; 4:e06229.

    PubMed Central  Article  Google Scholar 

  100. Dunn TW, Mu Y, Narayan S, Randlett O, Naumann EA, Yang CT, et al.Brain-wide mapping of neural activity controlling zebrafish exploratory locomotion. eLife. 2016; 5:471.

    Article  Google Scholar 

  101. Brodersen KH, Deserno L, Schlagenhauf F, Lin Z, Penny WD, Buhmann JM, et al.Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage Clin. 2014; 4:98–111.

    PubMed  Article  Google Scholar 

  102. Muldoon SF, Pasqualetti F, Gu S, Cieslak M, Grafton ST, Vettel JM, et al. Stimulation-Based Control of Dynamic Brain Networks. PLoS Comput Biol. 2016; 12(9):e1005076.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Dawkins R. Hierarchical organisation: A candidate principle for ethology In: Bateson PPG, Hinde RA, editors. Growing Points in Ethology. Cambridge, UK: Cambridge U Press: 1976. p. 7–54.

    Google Scholar 

  104. Tinbergen N. The Study of Instinct. Oxford. Oxford University Press: UK; 1951.

    Google Scholar 

  105. Simon HA. The Architecture of Complexity. Proc Am Philos Soc. 1962; 106(6):467–82.

    Google Scholar 

  106. Simon HA. The organization of complex systems In: Pattee HH, editor. Hierarchy Theory. New York: Braziller: 1973. p. 3–27.

    Google Scholar 

  107. Dawkins R, Dawkins M. Hierarchical Organization and Postural Facilitation - Rules for Grooming in Flies. Anim Behav. 1976; 24(4):739–55.

    Article  Google Scholar 

  108. Lefebvre L. Grooming in crickets: timing and hierarchical organization. Anim Behav. 1981; 29(4):973–84.

    Article  Google Scholar 

  109. Solway A, Diuk C, Córdova N, Yee D, Barto AG, Niv Y, et al. Optimal behavioral hierarchy. PLoS Comput Biol. 2014; 10(8):e1003779.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. Sponberg S. The Emergent Physics of Animal Locomotion. Phys Today. 2017; 70(9):34.

    Article  Google Scholar 

  111. Niv Y. Reinforcement learning in the brain. J Math Psychol. 2009; 53(3):139–54.

    Article  Google Scholar 


Page 2

Approaches for identifying stereotyped movements. a Representation of all of the movements an animal could theoretically make. For instance, each line could be the dynamics of two joint angles, say, the bending of a knee and an ankle, or another set of postural variables over time. Although an animal could potentially move with any of these postural trajectories, many of the motions here would be only rarely performed. b How we observe most animals to move. Specifically, they use a relatively small portion of their potential behavioral repertoire (stereotyped behaviors, colored lines) along with a few instances of less-commonly-observed ones (non-stereotyped behaviors, black lines). c One way to isolate stereotyped behaviors is to break-up the observed trajectories into clusters (denoted by dashed lines). d An alternate means of identifying stereotyped behaviors is to transform the dynamics in such a way that, for instance, each time one of the trajectories in b is performed, a dot is placed using a low-dimensional embedding to a different space. Similar trajectories are mapped near each other (dots), and stereotyped behaviors could be identified as peaks in the density contours (lines) of this map