Dapat menerangkan spektrum emisi atom hidrogen merupakan kelebihan dari teori atom

Spektrum Hidrogen adalah susunan pancaran dari atom hidrogen saat elektronnya melompat atau bertransisi dari tingkat energi tinggi ke rendah. Susunan pancaran dari atom hidrogen dibagi menjadi beberapa rangkaian spektral, dengan panjang gelombang yang dihitung dengan formula Rydberg. Garis-garis spektral yang diamati ini terbentuk karena elektron yang bertransisi antara dua tingkat energi yang berbeda di dalam atomnya. Klasifikasi rangkaian oleh formula Rydberg sangatlah penting dalam pengembangan mekanika kuantum. Rangkaian spektral sangat penting dalam astronomi untuk mendeteksi keberadaan dari hidrogen dan menghitung pergeseran merah.

Berkas:Gambar buat wiki.jpg

Susunan alat berada percobaan untuk mempelajari spektrum pancar atom dan molekul. Gas dipelajari berada dalam tabung pelucutan yang mempunyai dua elektrode. Ketika elektron mengalir dari elektrode negatif ke elektrode positif, Elektron-elektron itu bertumbukkan dengan gas. Proses tumbukan ini secara bertahap akan menyebabkan pemancaran cahaya oleh atom (atom molekul). cahaya yang dipancarkan diuraikan menjadi komponen-komponen oleh sebuah prisma. Selain komponen warna terfokus pada posisi tertentu, Sesuai dengan panjang gelombangnya dan membentuk garis berwarna (bayangan celah) pada pelat foto. Bayangan berwarna ini disebut garis-garis spektrum.

Pada akhir abad ke 20, tentang menganalisis spektrum radiasi diskret yang dipancarkan apabila lucutan muatan-muatan listrik yang dihasilkan dalam gas. Atom yang paling ringan dan paling sederhana merupakan atom hidrogen yang tersusun dari sebuah inti dan sebuah elektron. Maka, pengukuran spektroskopis menunjukan bahwa hidrogen memiliki spektrum yang sederhana dibandingkan unsur-unsur lain. Didapatkan bahwa garis dalam daerah optis dan bukan optis terletak sitematis dalam berbagai deretan. Semua panjang gelombang atom hidrogen diberikan oleh sebuah hubungan empiris tunggal[1]

Spektrum hidrogen adalah spektrum panjang gelombang yang kontinu yang tersusun dari sebuah inti dan sebuah elektron (hidrogen). Spektrum pancar merupakan spektrum kontinu maupun spektrum garis dan radiasi yang dipancarkan oleh zat. Spektrum pancar zat dapat dihasilkan dengan cara memberi energi pada sampel materi baik dengan energi termal maupun dengan bentuk energi lainnya (misalnya loncatan listrik dengan tegangan tinggi bila zatnya berupa gas. Spektrum garis (line sprekta) yaitu spektrum pancar atom yang terjadi dalam frasa gas, tidak menunjukan spektrum panjang gelombang kontinu yang merentang dari merah sampai violet, namun atom hanya memancarkan cahaya pada panjang (gelombang yang khas)[2].

Deret spektrum pancar atom hidrogen

Deret nf l Daerah spektrum
Lyman I 2,3,4,… Ultraviolet
Balmer 2 3,4,5,… Cahaya Tampak dan ultraviolet
Paschen 3 4,5,6,… Inframerah
Brackett 4 5,6,7,… Inframerah
Pfund 5 6,7,8,... Inframerah

Spektrum pancar hidrogen mencangkup rentang panjang gelombang yang luas dari inframerah sampai violet. Deret Balmer mudah dipelajari karena jumlah garisnya berada di daerah cahaya tampak [2]

Pada tahun 1913, Bohr mengembangkan teori fisika atom hidrogen berdasarkan rumus Reynberg. Model Bohr untuk atom hidrogen didasarkan pada gambaran planet dengan sebuah elektron ringan bermuatan negatif beredar mengelilingi sebuah inti berat bermuatan positif. Gaya yang mempertahankan elektron dalam orbitnya adalah gaya tarik Coulomb.

Pancaran radiasai dalam teori Bohr

Bohr mempostulat bahwa sebuah atom akan memancarkan radiasi apabila elektron yang semula pada satu orbit stabil diperkenankan dengan E = Eu, berpindah ke orbit yang diperkenankan lainnya dengan energi yang lebih kecil yang diberikan E = Er . Energi foton yang dipancarkan dengan demikian sama dengan selisih energi elektron di dalam kedua orbit yang diperkenankan[2].

  1. ^ Chang,Raymond.2004.Kimia Dasar.Jakarta:Erlangga.
  2. ^ a b c Graw,Hill.1987.Fisika Modern.Bandung:Erlangga

Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Spektrum_hidrogen&oldid=19334450"

Teori Atom Bohr Serta Kelebihan dan KelemahannyaNiels Bohr mengajukan teori atom Bohr ini pada tahun 1915. Karena model atom Bohr merupakan modifikasi (pengembangan) dari model atom Rutherford, beberapa ahli kimia menyebutnya dengan teori atom Rutherford-Bohr.

Dapat menerangkan spektrum emisi atom hidrogen merupakan kelebihan dari teori atom
Niels Bohr

Walaupun teori atom Bohr ini mengalami perkembangan, namun kenyataannya model atom Bohr masih mempunyai kelemahan. Namun demikian, beberapa poin dari model atom Bohr dapat diterima. Tidak seperti teori atom Dalton maupun teori atom Rutherford, keunggulan teori atom Bohr dapat menjelaskan tetapan Rydberg untuk garis spektra emisi hidrogen. Itulah salah satu kelebihan teori atom Niels Bohr.

Teori Atom Bohr mengemukakan bahwa atom terdiri dari inti berukuran sangat kecil dan bermuatan positif dikelilingi oleh elektron bermuatan negatif yang mempunyai orbit. Inilah gambar teori model atom Bohr berikut:

Dapat menerangkan spektrum emisi atom hidrogen merupakan kelebihan dari teori atom

Model atom Bohr berbentuk seperti tata surya, dengan elektron yang berada di lintasan peredaran (orbit) mengelilingi inti bermuatan positif yang ukurannya sangat kecil. Gaya gravitasi pada tata surya secara matematis dapat diilustrasikan sebagai gaya Coulomb antara nukleus (inti) yang bermuatan positif dengan elektron bermuatan negatif.

Teori atom Bohr kiranya dapat dijelaskan seperti berikut:

  • Elektron mengitari inti atom dalam orbit-orbit tertentu yang berbentuk lingkaran. Orbit-orbit ini sering disebut sebagai kulit-kulit elektron yang dinyatakan dengan notasi K, L, M, N ... dst yang secara berututan sesuai dengan n = 1, 2, 3, 4 ... dst.
  • Elektron dalam tiap orbit mempunyai energi tertentu yang makin tinggi dengan makin besarnya lingkaran orbit atau makin besarnya harga n. Energi ini bersifat terkuantisasi dan harga-harga yang diijinkan dinyatakan oleh harga momentum sudut elektron yang terkuantisasi sebesar n (h/2π) dengan n = 1, 2, 3, 4 ... dst.
  • Selama dalam orbitnya, elektron tidak memancarkan energi dan dikatakan dalam keadaan stasioner. Keberadaan elektron dalam orbit stasioner ini dipertahankan oleh gaya tarik elektrostatik elektron oleh inti atom yang diseimbangkan oleh gaya sentrifugal dari gerak elektron.
  • Elektron dapat berpindah dari orbit satu ke orbit lain yang mempunyai energi lebih tinggi bila elektron tersebut menyerap energi yang besarnya sesuai dengan perbedaan energi antara kedua orbit yang bersangkutan, dan sebaliknya bila elektron berpindah ke orbit yang mempunyai energi lebih rendah akan memancarkan energi radiasi yang teramati sebagai spektrum garis yang besarnya sesuai dengan perbedaan energi antara kedua orbit yang bersangkutan.
  • Atom dalam molekul dikatakan dalam keadaan tingkat dasar (ground state) apabila elektron-elektronnya menempati orbit-orbit sedemikian sehingga memberikan energi total terendah. Dan apabila elektron-elektron menempati  orbit-orbit yang memberikan energi lebih tinggi daripada energi tingkat dasarnya dikatakan atom dalam tingkat tereksitasi (excited state). Atom dalam keadaan dasar lebih stabil daripada dalam keadaan tereksitasi.

Contoh paling sederhana dari model atom hidrogen Bohr (Z = 1) atau sebuah ion mirip hidrogen (Z >1), yang mempunyai elektron bermuatan negatif mengelilingi inti bermuatan positif. Energi elektromagnetik akan diserap atau dilepaskan ketika sebuah elektron berpindah dari lintasan satu ke lintasan lain. Jari-jari dari lintasan bertambah sebagai n2, dimana n adalah bilangan kuantum utama. Transisi dari 3 ke 2 menghasilkan garis pertama dalam deret Balmer. Untuk hidrogen (Z = 1) akan menghasilkan foton dengan panjang gelombang 656 nm (cahaya merah).

  1. Keberhasilan teori Bohr terletak pada kemampuannya untuk meramalkan garis-garis dalam spektrum atom hidrogen
  2. Salah satu penemuan adalah sekumpulan garis halus, terutama jika atom-atom yang dieksitasikan diletakkan pada medan magnet.

Walaupun dinilai sudah revolusioner, tetapi masih ditemukan kelemahan teori atom Bohr yaitu: 

  1. Melanggar asas ketidakpastian Heisenberg karena elektron mempunyai jari-jari dan lintasan yang telah diketahui.
  2. Model atom Bohr mempunyai nilai momentum sudut lintasan ground state yang salah.
  3. Lemahnya penjelasan tentang prediksi spektra atom yang lebih besar.
  4. Tidak dapat memprediksi intensitas relatif garis spektra.
  5. Model atom Bohr tidak dapat menjelaskan struktur garis spektra yang baik.
  6. Belum dapat menerangkan spektrum atom kompleks, Intensitas relatif dari tiap garis spektrum emisi, serta Efek Zeeman, yaitu terpecahnya garis spektrum bila atom berada dalam medan magnet.
  7. Struktur garis halus ini dijelaskan melalui modifikasi teori Bohr tetapi teori ini tidak pernah berhasil memerikan spektrum selain atom hydrogen
  8. Belum mampu menjelaskan adanya stuktur halus(fine structure) pada spektrum, yaitu 2 atau lebih garis yang sangat berdekatan.

Demikian penjelasan mengenai Teori Atom Bohr Serta Kelebihan dan Kelemahannya, semoga penjelasan di atas dapat dengan mudah dipahami dan memberikan manfaat. RumusKimia.net