Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor

Sebuah kendaraan memiliki mesin yang digerakkan karena adanya pembakaran antara udara dan bahan bakar atau bensin. Supaya proses pembakaran berhasil dibutuhkan percikan api yang berasal dari busi. 

Percikan api tersebut berhasil muncul karena sistem pengapian konvensional yang digunakan sejak kendaraan bermotor dengan bensin pertama kali dibuat. Hingga saat ini sistem pengapian tersebut masih terus digunakan. 

Simak penjelasan lengkap mengenai pengapian konvensional dalam sebuah kendaraan berikut ini. 

Baca Juga : Engine Mounting: Fungsi, Jenis, dan Tanda Kerusakannya

Apa Itu Sistem Pengapian Konvensional dan Fungsinya 

Secara umum ada empat jenis sistem pengapian yang digunakan pada kendaraan mobil. Pertama adalah sistem pengapian konvensional, kedua sistem pengapian CDI, ketiga sistem pengapian transistor dan terakhir sistem pengapian DLI. 

Di antara keempatnya, pengapian konvensional adalah sistem yang pertama kali dirancang oleh manusia dalam sebuah kendaraan bermotor. Pengertian dari sistem ini adalah rangkaian mekatronika sederhana. 

Baca Juga : Mengenal Ring Piston Mobil dan Pertanda Ada Masalah

Tujuan dibuat adalah untuk menciptakan percikan api pada busi dengan interval tertentu. 

Busi akan menciptakan percikan api karena energi listrik dari tegangan yang mengalir tinggi melewati elektroda busi. 

Tegangan bisa mencapai 30.000 V DC, di mana celah 0,8 mm pada elektroda tersebut akan menciptakan lompatan elektron yang bentuknya percikan api. Ciri utamanya sendiri adalah menggunakan platina untuk menghubungkan dan memutuskan pengapian. 

Baca Juga : Ingat, Tak Semua Pelek Racing Bisa Dipasang Ban Tubeless!

Ada dua fungsi yang dimiliki sistem pengapian konvensional. Pertama adalah untuk menciptakan loncatan bunga api pada busi di waktu yang tepat. Waktunya adalah untuk menciptakan pembakaran antara udara dengan bahan bakar bensin. 

Fungsi yang kedua adalah untuk menciptakan loncatan bunga api dibutuhkan tegangan listrik yang tinggi. Tegangan tersebut akan menaikkan tegangan baterai sehingga menjadi tegangan tinggi coil melalui hubungan singkat arus primer oleh platina. 

Sistem ini berbeda dengan sistem pengapian CDI yang justru menganut prinsip pengosongan arus pada kapasitor supaya terdapat tegangan pada coil. Berbeda juga dengan sistem pengapian transistor yang tak lagi menggunakan platina. 

Seperti apa cara kerja dari pengapian konvensional dipengaruhi oleh komponen yang ada di dalamnya.

Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor

Komponen dalam Sistem Pengapian Konvensional

Setiap sistem pengapian memiliki komponen yang berbeda-beda tergantung bagaimana caranya bekerja. Masing-masing komponen ini memiliki fungsi dan tugas berbeda namun saling berhubungan untuk menciptakan percikan api. 

Jadi busi tidak bekerja sendiri dalam sebuah kendaraan motor atau mobil untuk bisa menciptakan percikan api. Secara umum ada tiga komponen utama yang penting yaitu Nok, Ignition Coil dan Distributor. 

Halaman 1 2 3 Tampilkan Semua

IGNITION COIL (KOIL PENGAPIAN)

Pada artikel ini penulis memuat pembahasan tentang salah satu komponen sistem pengapian yang berfungsi sebagai penaik arus baterai agar busi dapat memercikkan loncatan bunga api, ini belum sepenuhnya lengkap, pada postingan berikutnya akan penulis lengkapi dengan gambar rangkaian serta cara kerjanya.
Untuk menghasilkan percikan, listrik harus melompat melewati celah udara yang terdapat di antara dua elektroda pada busi. Karena udara merupakan isolator (penghantar listrik yang jelek), tegangan yang sangat tinggi dibutuhkan untuk mengatasi tahanan dari celah udara tersebut, juga untuk mengatasi sistem itu sendiri dan seluruh komponen sistem pengapian lainnya. Koil pengapian mengubah sumber tegangan rendah dari baterai atau koil sumber (12 V) menjadi sumber tegangan tinggi (10 KV atau lebih) yang diperlukan untuk menghasilkan loncatan bunga api yang kuat pada celah busi dalam sistem pengapian.

Pada koil pengapian, kumparan primer dan sekunder digulung pada inti besi. Kumparan-kumparan ini akan menaikkan tegangan yang diterima dari baterai menjadi tegangan yang sangat tinggi melalui induksi elektromagnetik. Inti besi (core) dikelilingi kumparan yang terbuat dari baja silicon tipis. Terdapat dua kumparan yaitu sekunder dan primer di mana lilitan primer digulung oleh lilitan sekunder. Untuk mencegah terjadinya hubungan singkat (short circuit) maka antara lapisan kumparan disekat dengan kertas khusus yang mempunyai tahanan sekat yang tinggi. Ujung kumparan primer dihubungkan dengan terminal negatif primer, sedangkan ujung yang lainnya dihubungkan dengan terminal positif primer. Kumparan sekunder dihubungkan dengan cara serupa di mana salah satunya dihubungkan dengan kumparan primer lewat (pada) terminal positif primer yang lainnya dihubungkan dengan tegangan tinggi malalui suatu pagas dan keduanya digulung.
Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor
Gambar 1 Rangkaian primer ketika platina tertutup

Medan magnet akan dibangkitkan pada saat arus mengalir pada gulungan (kumparan) primer. Garis gaya magnet yang dibangkitkan pada inti besin berlawanan dengan garis gaya magnet dalam kumparan primer.

Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor
Gambar 2 Rangkaian primer ketika platina terbuka

Arus yang mengalir pada rangkaian primer tidak akan segera mencapai maksimum, karena adanya perlawanan oleh induksi diri pada kumparan primer. Diperlukan waktu agar arus maksimum pada rangkaian primer dapat tercapai. Bila arus mengalir dalam kumparan primer dan kemudian arus tersebut diputuskan tiba-tiba, maka akan dibangkitkan tegangan dalam kumparan primer berupa induksi sendiri sebesar 300 – 400 V, searah dengan arus yang mengalir sebelumnya. Arus ini kemudian mengalir dan disimpan untuk sementara dalam kondensor. Apabila platina menutup kembali maka muatan listrik yang ada dalam kondensor tersebut akan mengalir ke rangkaian, sehingga arus primer segera menjadi penuh.

Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor
Gambar 3. Hubungan Kumparan Primer dan Kumparan Sekunder

Jika dua kumparan disusun dalam satu garis (dalam satu inti besi) dan arus yang mengalir kumparan primer dirubah (diputuskan), maka akan terbangkitkan tegangan pada kumparan sekunder berupa induksi sebesar 10 KV atau lebih. Arahnya berlawanan dengan garis gaya magnet pada kumparan primer.

Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor
Gambar. 4. Terjadinya tegangan pada kumparan sekunder

Pada saat kunci kontak di-on-kan, arus mengalir pada gulungan primer (demikian juga saat kunci kontak off) garis gaya magnet yang telah terbentuk tiba-tiba menghi-lang, akibatnya pada kumparan sekunder terbangkit tegangan tinggi. Sebaliknya apabila kunci kontak dihubungkan kembali, maka pada kumparan sekunder juga akan dibangkitkan tegangan dengan arah yang berlawanan dengan pembentukan garis gaya magnet pada kumparan primer (berlawanan dengan yang terjadi saat arus diputuskan).
Koil pengapian dapat membangkitkan tegangan tinggi apabila arus primer tiba-tiba diputuskan dengan membuka platina. Hubungan antara kumparan primer dan sekunder diperlihatkan pada diagram di bawah ini.

Besarnya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor
Gambar 5. Diagram hubungan antara kumparanprimer dan sekunder

Besarnya arus primer yang mengalir tidak segera mencapai maksimum pada saat platina menutup, karena arus tidak segera mengalir pada kumparan primer. Adanya tahanan dalam kumparan tersebut, mengakibatkan perubahan garis gaya magnet yang terjadi juga secara bertahap. Tegangan tinggi yang terinduksi pada kumparan sekunder juga terjadi pada waktu yang sangat singkat.

Besamya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor sebagai berikut:

1. Banyaknya Garis Gaya Magnet Semakin banyak garis gaya magnet yang terbentuk dalam kumparan, semakin besar tegangan yang diinduksi. 2. Banyaknya Kumparan Semakin banyak lilitan pada kumparan, semakin tinggi tegangan yang diinduksikan. 3. Perubahan Garis Gaya Magnet

Semakin cepat perubahan banyaknya garis gaya magnet yang dibentuk pada kumparan, semakin tinggi tegangan yang dibangkitkan kumparan sekunder.


Untuk memperbesar tegangan yang dibangkitkan pada kumparan sekunder, maka arus yang masuk pada kumparan primer harus sebesar mungkin dan pemutusan arus primer harus juga secepat mungkin.


Page 2

Untuk menghasilkan percikan, listrik harus melompat melewati celah udara yang terdapat di antara dua elektroda pada busi. Karena udara merupakan isolator (penghantar listrik yang jelek), tegangan yang sangat tinggi dibutuhkan untuk mengatasi tahanan dari celah udara tersebut, juga untuk mengatasi sistem itu sendiri dan seluruh komponen sistem pengapian lainnya. Koil pengapian mengubah sumber tegangan rendah dari baterai atau koil sumber (12 V) menjadi sumber tegangan tinggi (10 KV atau lebih) yang diperlukan untuk menghasilkan loncatan bunga api yang kuat pada celah busi dalam sistem pengapian. Pada koil pengapian, kumparan primer dan sekunder digulung pada inti besi. Kumparan-kumparan ini akan menaikkan tegangan yang diterima dari baterai menjadi tegangan yang sangat tinggi melalui induksi elektromagnetik. Inti besi (core) dikelilingi kumparan yang terbuat dari baja silicon tipis. Terdapat dua kumparan yaitu sekunder dan primer di mana lilitan primer digulung oleh lilitan sekunder. Untuk mencegah terjadinya hubungan singkat (short circuit) maka antara lapisan kumparan disekat dengan kertas khusus yang mempunyai tahanan sekat yang tinggi. Ujung kumparan primer dihubungkan dengan terminal negatif primer, sedangkan ujung yang lainnya dihubungkan dengan terminal positif primer. Kumparan sekunder dihubungkan dengan cara serupa di mana salah satunya dihubungkan dengan kumparan primer lewat (pada) terminal positif primer yang lainnya dihubungkan dengan tegangan tinggi malalui suatu pegas dan keduanya digulung.

Arus yang mengalir pada rangkaian primer tidak akan segera mencapai maksimum, karena adanya perlawanan oleh induksi diri pada kumparan primer. Diperlukan waktu agar arus maksimum pada rangkaian primer dapat tercapai. Bila arus mengalir dalam kumparan primer dan kemudian arus tersebut diputuskan tiba-tiba, maka akan dibangkitkan tegangan dalam kumparan primer berupa induksi sendiri sebesar 300 – 400 V, searah dengan arus yang mengalir sebelumnya. Arus ini kemudian mengalir dan disimpan untuk sementara dalam kondensor. Apabila platina menutup kembali maka muatan listrik yang ada dalam kondensor tersebut akan mengalir ke rangkaian, sehingga arus primer segera menjadi penuh. Jika dua kumparan disusun dalam satu garis (dalam satu inti besi) dan arus yang mengalir kumparan primer dirubah (diputuskan), maka akan terbangkitkan tegangan pada kumparan sekunder berupa induksi sebesar 10 KV atau lebih. Arahnya berlawanan dengan garis gaya magnet pada kumparan primer. Tegangan terbangkit pada kumparan sekunder. Pada saat kunci kontak di-on-kan, arus mengalir pada gulungan primer (demikian juga saat kunci kontak off) garis gaya magnet yang telah terbentuk tiba-tiba menghi-lang, akibatnya pada kum-paran sekunder terbangkit tegangan tinggi. Sebaliknya apabila kunci kontak dihubungkan kembali, maka pada kumparan sekunder juga akan dibangkitkan tegangan dengan arah yang berlawanan dengan pembentukan garis gaya magnet pada kumparan primer (berlawanan dengan yang terjadi saat arus diputuskan). Koil pengapian dapat  membangkit- kan tegangan tinggi apabila  arus primer tiba-tiba diputuskan dengan membuka platina. Hubungan antara kumparan primer dan sekunder.

Besarnya arus primer yang mengalir tidak segera mencapai maksimum pada saat platina menutup, karena arus tidak segera mengalir pada kumparan primer. Adanya tahanan dalam kumparan tersebut, mengakibatkan perubahan garis gaya magnet yang terjadi juga secara bertahap. Tegangan tinggi yang terinduksi pada kumparan sekunder juga terjadi pada waktu yang sangat singkat. Besamya tegangan yang dibangkitkan oleh kumparan sekunder ditentukan oleh faktor-faktor sebagai berikut:

1. Banyaknya Garis Gaya Magnet Semakin banyak garis gaya magnet yang terbentuk dalam kumparan, semakin besar tegangan yang diinduksi. 2. Banyaknya Kumparan Semakin banyak lilitan pada kumparan, semakin tinggi tegangan yang diinduksikan. 3. Perubahan Garis Gaya Magnet

Semakin cepat perubahan banyaknya garis gaya magnet yang dibentuk pada kumparan, semakin tinggi tegangan yang dibangkitkan kumparan sekunder. Untuk memperbesar tegangan yang dibangkitkan pada kumparan sekunder, maka arus yang masuk pada kumparan primer harus sebesar mungkin dan pemutusan arus primer harus juga secepat mungkin.


Page 2