Unsur yang dapat yang tersusun dari beberapa garis yang ujung terluarnya bersatu adalah

Sebuah molekul adalah gugusan yang secara elektris biasa yang tersusun dari dua atau lebih atom yang saling berikatan melalui ikatan kimia.[4][5][6][7][8] Molekul dibedakan dari ion berdasarkan ketiadaan muatan listrik. Namun, dalam fisika kuantum, kimia organik, dan biokimia, istilah molekul sering digunakan dengan agak longgar, juga digunakan untuk ion poliatomik.

Unsur yang dapat yang tersusun dari beberapa garis yang ujung terluarnya bersatu adalah
Pembentukan ikatan kovalen H2 (kanan) di mana dua atom hidrogen berbagi dua elektron.

Ikatan kovalen adalah ikatan kimia yang melibatkan pembagian pasangan elektron di antara atom. Pasangan elektron ini disebut pasangan bersama atau pasangan ikatan, dan keseimbangan stabil dari gaya tarik dan tolak antar atom, ketika mereka berbagi elektron hal itu disebut ikatan kovalen.[15]

IonikSunting

Natrium dan fluor yang sedang mengalami reaksi redoks membentuk natrium fluorida. Natrium kehilangan elektron terluarnya untuk memperoleh konfigurasi elektron stabilnya, dan elektron ini memasuki atom fluor secara eksotermal.

Ikatan ionik adalah sejenis ikatan kimia yang melibatkan daya tarik elektrostatik antara ion dengan muatan berlawanan, dan merupakan interaksi utama yang terjadi pada senyawa ionik. Ion adalah atom yang telah kehilangan satu atau lebih elektron (disebut kation) dan atom yang telah mendapatkan satu atau lebih elektron (disebut anion).[16] Transfer elektron ini disebut elektrovalensi yang merupakan lawan dari kovalensi. Dalam kasus yang paling sederhana, kation adalah atom logam dan anion adalah atom nonlogam, tetapi ion ini bisa menjadi lebih rumit, misalnya, ion molekuler seperti NH+
4
atau SO2
4
. Sederhananya, ikatan ionik adalah transfer elektron dari logam ke nonlogam agar kedua atom mendapatkan kelopak valensi yang terisi penuh.

Ukuran molekulSunting

Kebanyakan molekul terlalu kecil untuk dilihat dengan mata telanjang, tapi terdapat pengecualian. DNA, sebuah makromolekul, dapat mencapai ukuran makroskopis, seperti kebanyakan molekul polimer. Molekul yang biasa digunakan sebagai blok pembangun untuk sintesis organik memiliki dimensi beberapa angstrom (Å) sampai beberapa ratus Å, atau sekitar seper satu miliar meter. Molekul tunggal biasanya tidak dapat diamati oleh cahaya (seperti disebutkan di atas), tetapi molekul kecil dan bahkan kerangka atom dapat ditelusuri dalam beberapa keadaan dengan menggunakan mikroskop gaya atom. Beberapa molekul terbesar adalah makromolekul atau supermolekul.

Molekul terkecil adalah hidrogen diatomik (H2), dengan panjang ikatan 0,74 Å.[17]

Jari-jari molekul yang efektif adalah ukuran yang ditunjukkan molekul dalam larutan.[18][19] Tabel permselektivitas berbagai zat berisi contoh-contoh ini.

Rumus molekulSunting

Jenis rumus kimiaSunting

Rumus kimia untuk molekul menggunakan satu baris simbol unsur kimia, angka, dan terkadang juga simbol lainnya, seperti tanda kurung, tanda hubung (dash), tanda kurung siku, dan tanda plus (+) dan minus (). Ini terbatas pada satu baris tipografi simbol, yang mungkin mencakup subskrip dan superskrip.

Rumus empiris senyawa adalah jenis rumus kimia yang sangat sederhana.[20] Ini adalah rasio bilangan bulat paling sederhana dari unsur kimia pembentuknya.[21] Sebagai contoh, air selalu terdiri dari rasio 2:1 atom hidrogen terhadap atom oksigen, dan etil alkohol atau etanol selalu terdiri dari karbon, hidrogen, dan oksigen dalam rasio 2:6:1. Namun, ini tidak menentukan jenis molekul secara unik dimetil eter memiliki rasio yang sama seperti etanol, misalnya. Molekul dengan atom yang sama dalam susunan yang berbeda disebut isomer. Juga karbohidrat, misalnya, memiliki rasio yang sama (karbon:hidrogen:oksigen = 1:2:1) (dan dengan demikian rumus empiris yang sama) namun jumlah atom dalam molekulnya berbeda.

Rumus molekul mencerminkan jumlah atom yang tepat yang membentuk molekul dan mengkarakterisasi molekul yang berbeda. Namun isomer yang berbeda dapat memiliki komposisi atom yang sama saat menjadi molekul yang berbeda.

Rumus empiris sering kali sama dengan rumus molekul tapi tidak selalu. Sebagai contoh, molekul asetilena memiliki rumus molekul C2H2, tetapi rasio unsur yang paling sederhana adalah CH.

Massa molekul dapat dihitung dari rumus kimia dan dinyatakan dalam satuan massa atom konvensional sama dengan 1/12 massa atom karbon-12 (isotop 12C) netral. Untuk padatan jaringan, istilah unit rumus digunakan dalam perhitungan stoikiometri.

Rumus strukturSunting

Representasi 3D (kiri dan tengah) dan 2D (kanan) dari molekul terpenoid atisana.

Untuk molekul dengan struktur 3 dimensi yang rumit, terutama yang melibatkan atom yang terikat pada empat substituen yang berbeda, formula molekul sederhana atau bahkan rumus kimia semi-struktural mungkin tidak cukup untuk menentukan molekul secara lengkap. Dalam kasus ini, mungkin diperlukan jenis formula grafis yang disebut rumus struktur. Rumus struktur pada gilirannya dapat diwakili dengan nama kimia satu dimensi, tetapi tata nama kimia semacam itu membutuhkan banyak kata dan istilah yang bukan merupakan bagian dari rumus kimia.

Geometri molekulSunting

Struktur dan citra STM molekul dendrimer "sianostar".[22]

Molekul memiliki kesetimbangan geometripanjang dan sudut ikatantetap yang dengannya mereka terus berosilasi melalui gerak vibrasi dan rotasi. Bahan murni terdiri dari molekul dengan struktur geometris rata-rata yang sama. Rumus kimia dan struktur molekul adalah dua faktor penting yang menentukan sifat-sifatnya, terutama reaktivitasnya. Isomer berbagi rumus kimia tapi biasanya memiliki sifat yang sangat berbeda karena strukturnya yang berbeda. Stereoisomer, jenis isomer tertentu, memiliki sifat fisiko-kimia yang sangat mirip dan pada saat bersamaan berbeda aktivitas biokimianya.

Spektroskopi molekulerSunting

Hidrogen dapat dibebaskan dari molekul H2TPP dengan menerapkan tegangan berlebih ke ujung mikroskop penerowongan payaran (STM, a); penghilangan ini mengubah kurva arus-voltase (I-V) dari molekul TPP, yang diukur dengan menggunakan ujung STM yang sama, dari seperti dioda (kurva merah di b) menjadi seperti resistor (kurva hijau). Gambar (c) menunjukkan deretan molekul TPP, H2TPP dan TPP. Saat memindai gambar (d), kelebihan voltase diterapkan pada H2TPP pada titik hitam, yang secara langsung menghilangkan hidrogen, seperti yang ditunjukkan pada bagian bawah (d) dan gambar hasil pemindaian ulang (e). Manipulasi semacam itu bisa digunakan dalam elektronika molekul tunggal.[23]

Spektroskopi molekuler berhubungan dengan respon (spektrum) molekul yang berinteraksi dengan sinyal probing energi yang diketahui (atau frekuensi, sesuai dengan rumus Planck). Molekul memiliki tingkat energi terkuantisasi yang dapat dianalisis dengan mendeteksi pertukaran energi molekul melalui absorbansi atau emisi.[24] Spektroskopi umumnya tidak mengacu pada studi difraksi di mana partikel seperti neutron, elektron, atau sinar-X energi tinggi yang berinteraksi dengan susunan molekul reguler (seperti dalam kristal).

Spektroskopi gelombang mikro biasanya mengukur perubahan rotasi molekul, dan dapat digunakan untuk mengidentifikasi molekul di luar angkasa. Spektroskopi inframerah mengukur perubahan vibrasi molekul, termasuk stretching, bending atau twisting. Ini biasanya digunakan untuk mengidentifikasi jenis ikatan atau gugus fungsi dalam molekul. Perubahan pengaturan elektron menghasilkan jalur penyerapan atau emisi pada sinar ultraviolet, sinar tampak atau inframerah dekat, dan menghasilkan warna. Spektroskopi resonansi inti sebenarnya mengukur lingkungan inti tertentu dalam molekul, dan dapat digunakan untuk mengkarakterisasi jumlah atom dalam posisi yang berbeda dalam molekul.

Aspek teoretisSunting

Studi tentang molekul melalui fisika molekuler dan kimia teoretis sebagian besar didasarkan pada mekanika kuantum dan sangat penting untuk memahami ikatan kimia. Molekul yang paling sederhana adalah ion-molekul hidrogen, H+
2
, dan yang paling sederhana dari semua ikatan kimia adalah ikatan satu elektron. H+
2
terdiri dari dua proton bermuatan positif dan satu elektron bermuatan negatif, yang berarti bahwa persamaan Schrödinger untuk sistem tersebut dapat dipecahkan lebih mudah karena kurangnya tolakan elektronelektron. Seiring dengan kepesatan perkembangan komputer digital, solusi pendekatan untuk molekul yang lebih rumit menjadi mungkin dan merupakan salah satu aspek utama dari kimia komputasi.

Ketika mencoba untuk menentukan secara ketat apakah susunan atom cukup stabil untuk dianggap sebagai molekul, IUPAC menyarankan agar "sesuai dengan depresi pada permukaan energi potensial yang cukup dalam untuk membatasi setidaknya satu keadaan vibrasi".[4] Definisi ini tidak bergantung pada sifat interaksi antara atom, tetapi hanya pada kekuatan interaksi. Sebenarnya, ini termasuk spesies yang terikat lemah yang secara tradisional tidak dianggap sebagai molekul, seperti helium dimer, He2, yang memiliki satu keadaan ikatan vibrasi[25] dan terikat secara longgar sehingga hanya dapat diamati pada suhu yang sangat rendah.

Stabil-tidaknya susunan atom untuk dianggap sebagai molekul secara inheren merupakan definisi operasional. Secara filosofis, oleh karena itu, sebuah molekul bukanlah entitas fundamental (sebaliknya, misalnya, terhadap partikel dasar); sebaliknya, konsep molekul adalah cara kimiawan untuk membuat pernyataan yang berguna tentang kekuatan interaksi skala atom di dunia yang kita amati.

Lihat jugaSunting

  • Atom
  • Polaritas kimia
  • Ikatan kovalen
  • Molekul diatomik
  • Daftar senyawa kimia
  • Daftar molekul interstelar dan sirkumstelar
  • Perangkat lunak perancang molekul
  • Rekayasa molekul
  • Geometri molekul
  • Hamiltonan molekul
  • Ion poliatomik
  • Pemodelan molekul
  • Orbital molekul
  • Ikatan non kovalen
  • Sistem periodik molekul kecil
  • Molekul kecil
  • Perbandingan perangkat lunak untuk pemodelan mekanika molekul
  • Molekul van der Waals
  • World Wide Molecular Matrix

ReferensiSunting

  1. ^ Iwata, Kota; Yamazaki, Shiro; Mutombo, Pingo; Hapala, Prokop; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki (2015). "Chemical structure imaging of a single molecule by atomic force microscopy at room temperature". Nature Communications. 6: 7766. Bibcode:2015NatCo...6E7766I. doi:10.1038/ncomms8766. PMC4518281. PMID26178193.
  2. ^ Dinca, L. E.; De Marchi, F.; MacLeod, J. M.; Lipton-Duffin, J.; Gatti, R.; Ma, D.; Perepichka, D. F.; Rosei, F. (2015). "Pentacene on Ni(111): Room-temperature molecular packing and temperature-activated conversion to graphene". Nanoscale. 7 (7): 32639. Bibcode:2015Nanos...7.3263D. doi:10.1039/C4NR07057G. PMID25619890.
  3. ^ Hapala, Prokop; Švec, Martin; Stetsovych, Oleksandr; Van Der Heijden, Nadine J.; Ondráček, Martin; Van Der Lit, Joost; Mutombo, Pingo; Swart, Ingmar; Jelínek, Pavel (2016). "Mapping the electrostatic force field of single molecules from high-resolution scanning probe images". Nature Communications. 7: 11560. Bibcode:2016NatCo...711560H. doi:10.1038/ncomms11560. PMC4894979. PMID27230940.
  4. ^ a b IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) "Molecule".
  5. ^ Ebbin, Darrell D. (1990). General Chemistry (edisi ke-3rd). Boston: Houghton Mifflin Co. ISBN0-395-43302-9.
  6. ^ Brown, T.L.; Kenneth C. Kemp; Theodore L. Brown; Harold Eugene LeMay; Bruce Edward Bursten (2003). Chemistry the Central Science (edisi ke-9th). New Jersey: Prentice Hall. ISBN0-13-066997-0.
  7. ^ Chang, Raymond (1998). Chemistry (edisi ke-6th). New York: McGraw Hill. ISBN0-07-115221-0.
  8. ^ Zumdahl, Steven S. (1997). Chemistry (edisi ke-4th). Boston: Houghton Mifflin. ISBN0-669-41794-7.
  9. ^ Chandra, Sulekh (2005). Comprehensive Inorganic Chemistry. New Age Publishers. ISBN81-224-1512-1.
  10. ^ "Molecule". Encyclopædia Britannica. 22 January 2016. Diakses tanggal 23 February 2016.
  11. ^ Harper, Douglas. "molecule". Online Etymology Dictionary. Diakses tanggal 2016-02-22.
  12. ^ "molecule". Merriam-Webster. Diakses tanggal 22 February 2016.
  13. ^ Molecule Definition (Frostburg State University)
  14. ^ "The Hutchinson unabridged encyclopedia with atlas and weather guide". worldcat.org. Oxford, England. Diakses tanggal 28 February 2016.
  15. ^ Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN0-13-250882-6. Diakses tanggal 2012-02-05.
  16. ^ Campbell, Flake C. (2008-01-01). Elements of Metallurgy and Engineering Alloys (dalam bahasa Inggris). ASM International. ISBN9781615030583.
  17. ^ Roger L. DeKock; Harry B. Gray; Harry B. Gray (1989). Chemical structure and bonding. University Science Books. hlm.199. ISBN0-935702-61-X.
  18. ^ Chang RL; Deen WM; Robertson CR; Brenner BM. (1975). "Permselectivity of the glomerular capillary wall: III. Restricted transport of polyanions". Kidney Int. 8 (4): 212218. doi:10.1038/ki.1975.104. PMID1202253.
  19. ^ Chang RL; Ueki IF; Troy JL; Deen WM; Robertson CR; Brenner BM. (1975). "Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran". Biophys J. 15 (9): 887906. Bibcode:1975BpJ....15..887C. doi:10.1016/S0006-3495(75)85863-2. PMC1334749. PMID1182263.
  20. ^ Wink, Donald J.; Fetzer-Gislason, Sharon; McNicholas, Sheila (2003-03-01). The Practice of Chemistry (dalam bahasa Inggris). Macmillan. ISBN9780716748717.
  21. ^ "ChemTeam: Empirical Formula". www.chemteam.info. Diakses tanggal 2017-04-16.
  22. ^ Hirsch, Brandon E.; Lee, Semin; Qiao, Bo; Chen, Chun-Hsing; McDonald, Kevin P.; Tait, Steven L.; Flood, Amar H. (2014). "Anion-induced dimerization of 5-fold symmetric cyanostars in 3D crystalline solids and 2D self-assembled crystals". Chemical Communications. 50 (69): 982730. doi:10.1039/C4CC03725A. PMID25080328.
  23. ^ Zoldan, V. C.; Faccio, R; Pasa, A. A. (2015). "N and p type character of single molecule diodes". Scientific Reports. 5: 8350. Bibcode:2015NatSR...5E8350Z. doi:10.1038/srep08350. PMC4322354. PMID25666850.
  24. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) "Spectroscopy".
  25. ^ Anderson JB (May 2004). "Comment on "An exact quantum Monte Carlo calculation of the helium-helium intermolecular potential" [J. Chem. Phys. 115, 4546 (2001)]". J Chem Phys. 120 (20): 98867. Bibcode:2004JChPh.120.9886A. doi:10.1063/1.1704638. PMID15268005.

Pranala luarSunting

  • Molecule of the MonthSchool of Chemistry, University of Bristol
Diperoleh dari "https://id.wikipedia.org/w/index.php?title=Molekul&oldid=19209209"