Ethylene role in plant growth development and senescence interaction with other phytohormones

@article{Iqbal2017EthyleneRI, title={Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones}, author={Noushina Iqbal and Nafees A. Khan and Ant{\'o}nio Ferrante and Alice Trivellini and Alessandra Francini and M. Iqbal R. Khan}, journal={Frontiers in Plant Science}, year={2017}, volume={8} }

The complex juvenile/maturity transition during a plant’s life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene… 

  1. Gray WM: Hormonal regulation of plant growth and development. PLoS Biol. 2004, 2: E311-10.1371/journal.pbio.0020311.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Lumba S, Tsuchiro T, Delmas F, Hezky J, Provart N, Lu QSM, McCourt P, Gazzarrini S: The embryonic leaf identity gene FUSCA3 regulates vegetative phase transitions by negatively modulating ethylene regulated gene expression in Arabidopsis. BMC Biol. 2012, 10: 8-10.1186/1741-7007-10-8.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  3. Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P: The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell. 2004, 7: 373-385. 10.1016/j.devcel.2004.06.017.

    PubMed  CAS  Article  Google Scholar 

  4. Abeles FB, Morgan PW, Saltveit ME: Ethylene in Plant Biology. 1992, San Diego: Academic Press, 2

    Google Scholar 

  5. Chen YF, Etheridge N, Schaller GE: Ethylene signal transduction. Ann Bot (Lond). 2005, 95: 901-915. 10.1093/aob/mci100.

    CAS  Article  Google Scholar 

  6. Zhu Z, An F, Feng Y, Li P, Xue L, A M, Jiang Z, Kim JM, To TK, Li W, Zhang X, Yu Q, Dong Z, Chen WQ, Seki M, Zhou JM, Guo H: Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA. 2011, 108: 12539-12544. 10.1073/pnas.1103959108.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  7. Lingam S, Mohrbacher J, Brumbarova T, Potuschak T, Fink-Straube C, Blondet E, Genschik P, Bauer P: Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell. 2011, 23: 1815-1829. 10.1105/tpc.111.084715.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  8. Zhong S, Zhao M, Shi T, Shi H, An F, Zhao Q, Guo H: EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proc Natl Acad Sci USA. 2009, 106: 21431-21436. 10.1073/pnas.0907670106.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  9. Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH: The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J. 2011, 68: 168-185. 10.1111/j.1365-313X.2011.04677.x.

    PubMed  CAS  Article  Google Scholar 

  10. Chuck G, Hake S: Regulation of developmental transitions. Curr Opin Plant Biol. 2005, 8: 67-70. 10.1016/j.pbi.2004.11.002.

    PubMed  Article  Google Scholar 


Page 2

Ethylene signal transduction and the control of juvenile to adult phase transitions in the leaf. The pathway for ethylene signal transduction involves positive and negative regulators that culminate in transcriptional regulation by the EIN3-like family of transcription factors. Among the ethylene-responsive genes are some that encode additional transcription factors such as those of the ethylene response factor (ERF) and ethylene response DNA-binding factor (EDF) families. The pharmacological agents aminoethoxyvinylglycine (AVG) and silver can be used to inhibit ethylene responses through their ability to target ethylene biosynthesis or the receptors, respectively. One effect of ethylene is to stimulate the juvenile to adult phase transition of leaves. The transcription factor FUS3 negatively regulates the effects of ethylene on this developmental process. The juvenile to adult leaf morphology series shown is from Figure 3A in Lumba et al. [2].

The complex juvenile/maturity transition during a plant's life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene's role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops.

Keywords: VOCs; ethylene; flower senescence; fruit ripening; leaf senescence; phytohormones.