What is the time complexity for inserting at the end of linked list?

Insert N elements in a Linked List one after other at middle position

Given an array of N elements. The task is to insert the given elements at the middle position in the linked list one after another. Each insert operation should take O(1) time complexity.
Examples:

Input: arr[] = {1, 2, 3, 4, 5}
Output: 1 -> 3 -> 5 -> 4 -> 2 -> NULL
1 -> NULL
1 -> 2 -> NULL
1 -> 3 -> 2 -> NULL
1 -> 3 -> 4 -> 2 -> NULL
1 -> 3 -> 5 -> 4 -> 2 -> NULL
Input: arr[] = {5, 4, 1, 2}
Output: 5 -> 1 -> 2 -> 4 -> NULL

Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: There are two cases:

  1. Number of elements present in the list are less than 2.
  2. Number of elements present in the list are more than 2.
    • The number of elements already present are even say N then the new element is inserted in the middle position that is (N / 2) + 1.
    • The number of elements already present are odd then the new element is inserted next to the current middle element that is (N / 2) + 2.

We take one additional pointer ‘middle’ which stores the address of current middle element and a counter which counts the total number of elements.
If the elements already present in the linked list are less than 2 then middle will always point to the first position and we insert the new node after the current middle.
If the elements already present in the linked list are more than 2 then we insert the new node next to the current middle and increment the counter.
If there are an odd number of elements after insertion then the middle points to the newly inserted node else there is no change in the middle pointer.
Below is the implementation of the above approach:

C++




// C++ implementation of the approach
#include <iostream>
using namespace std;
// Node structure
struct Node {
int value;
struct Node* next;
};
// Class to represent a node
// of the linked list
class LinkedList {
private:
struct Node *head, *mid;
int count;
public:
LinkedList();
void insertAtMiddle(int);
void show();
};
LinkedList::LinkedList()
{
head = NULL;
mid = NULL;
count = 0;
}
// Function to insert a node in
// the middle of the linked list
void LinkedList::insertAtMiddle(int n)
{
struct Node* temp = new struct Node();
struct Node* temp1;
temp->next = NULL;
temp->value = n;
// If the number of elements
// already present are less than 2
if (count < 2) {
if (head == NULL) {
head = temp;
}
else {
temp1 = head;
temp1->next = temp;
}
count++;
// mid points to first element
mid = head;
}
// If the number of elements already present
// are greater than 2
else {
temp->next = mid->next;
mid->next = temp;
count++;
// If number of elements after insertion
// are odd
if (count % 2 != 0) {
// mid points to the newly
// inserted node
mid = mid->next;
}
}
}
// Function to print the nodes
// of the linked list
void LinkedList::show()
{
struct Node* temp;
temp = head;
// Initializing temp to head
// Iterating and printing till
// The end of linked list
// That is, till temp is null
while (temp != NULL) {
cout << temp->value << " -> ";
temp = temp->next;
}
cout << "NULL";
cout << endl;
}
// Driver code
int main()
{
// Elements to be inserted one after another
int arr[] = { 1, 2, 3, 4, 5 };
int n = sizeof(arr) / sizeof(arr[0]);
LinkedList L1;
// Insert the elements
for (int i = 0; i < n; i++)
L1.insertAtMiddle(arr[i]);
// Print the nodes of the linked list
L1.show();
return 0;
}
Java




// Java implementation of the approach
class GFG
{
// Node ure
static class Node
{
int value;
Node next;
};
// Class to represent a node
// of the linked list
static class LinkedList
{
Node head, mid;
int count;
LinkedList()
{
head = null;
mid = null;
count = 0;
}
// Function to insert a node in
// the middle of the linked list
void insertAtMiddle(int n)
{
Node temp = new Node();
Node temp1;
temp.next = null;
temp.value = n;
// If the number of elements
// already present are less than 2
if (count < 2)
{
if (head == null)
{
head = temp;
}
else
{
temp1 = head;
temp1.next = temp;
}
count++;
// mid points to first element
mid = head;
}
// If the number of elements already present
// are greater than 2
else
{
temp.next = mid.next;
mid.next = temp;
count++;
// If number of elements after insertion
// are odd
if (count % 2 != 0)
{
// mid points to the newly
// inserted node
mid = mid.next;
}
}
}
// Function to print the nodes
// of the linked list
void show()
{
Node temp;
temp = head;
// Initializing temp to head
// Iterating and printing till
// The end of linked list
// That is, till temp is null
while (temp != null)
{
System.out.print( temp.value + " -> ");
temp = temp.next;
}
System.out.print( "null");
System.out.println();
}
}
// Driver code
public static void main(String args[])
{
// Elements to be inserted one after another
int arr[] = { 1, 2, 3, 4, 5 };
int n = arr.length;
LinkedList L1=new LinkedList();
// Insert the elements
for (int i = 0; i < n; i++)
L1.insertAtMiddle(arr[i]);
// Print the nodes of the linked list
L1.show();
}
}
// This code is contributed by Arnab Kundu
Python3




# Python3 implementation of the approach
# Node ure
class Node:
def __init__(self):
self.value = 0
self.next = None
# Class to represent a node
# of the linked list
class LinkedList:
def __init__(self) :
self.head = None
self.mid = None
self.count = 0
# Function to insert a node in
# the middle of the linked list
def insertAtMiddle(self , n):
temp = Node()
temp1 = None
temp.next = None
temp.value = n
# If the number of elements
# already present are less than 2
if (self.count < 2):
if (self.head == None) :
self.head = temp
else:
temp1 = self.head
temp1.next = temp
self.count = self.count + 1
# mid points to first element
self.mid = self.head
# If the number of elements already present
# are greater than 2
else:
temp.next = self.mid.next
self.mid.next = temp
self.count = self.count + 1
# If number of elements after insertion
# are odd
if (self.count % 2 != 0):
# mid points to the newly
# inserted node
self.mid = self.mid.next
# Function to print the nodes
# of the linked list
def show(self):
temp = None
temp = self.head
# Initializing temp to self.head
# Iterating and printing till
# The end of linked list
# That is, till temp is None
while (temp != None) :
print( temp.value, end = " -> ")
temp = temp.next
print( "None")
# Driver code
# Elements to be inserted one after another
arr = [ 1, 2, 3, 4, 5]
n = len(arr)
L1 = LinkedList()
# Insert the elements
for i in range(n):
L1.insertAtMiddle(arr[i])
# Print the nodes of the linked list
L1.show()
# This code is contributed by Arnab Kundu
C#




// C# implementation of the approach
using System;
class GFG
{
// Node ure
public class Node
{
public int value;
public Node next;
};
// Class to represent a node
// of the linked list
public class LinkedList
{
public Node head, mid;
public int count;
public LinkedList()
{
head = null;
mid = null;
count = 0;
}
// Function to insert a node in
// the middle of the linked list
public void insertAtMiddle(int n)
{
Node temp = new Node();
Node temp1;
temp.next = null;
temp.value = n;
// If the number of elements
// already present are less than 2
if (count < 2)
{
if (head == null)
{
head = temp;
}
else
{
temp1 = head;
temp1.next = temp;
}
count++;
// mid points to first element
mid = head;
}
// If the number of elements already present
// are greater than 2
else
{
temp.next = mid.next;
mid.next = temp;
count++;
// If number of elements after insertion
// are odd
if (count % 2 != 0)
{
// mid points to the newly
// inserted node
mid = mid.next;
}
}
}
// Function to print the nodes
// of the linked list
public void show()
{
Node temp;
temp = head;
// Initializing temp to head
// Iterating and printing till
// The end of linked list
// That is, till temp is null
while (temp != null)
{
Console.Write( temp.value + " -> ");
temp = temp.next;
}
Console.Write( "null");
Console.WriteLine();
}
}
// Driver code
public static void Main(String []args)
{
// Elements to be inserted one after another
int []arr = { 1, 2, 3, 4, 5 };
int n = arr.Length;
LinkedList L1=new LinkedList();
// Insert the elements
for (int i = 0; i < n; i++)
L1.insertAtMiddle(arr[i]);
// Print the nodes of the linked list
L1.show();
}
}
// This code contributed by Rajput-Ji
Javascript




<script>
// JavaScript implementation of the approach
// Node ure
class Node {
constructor() {
this.value = 0;
this.next = null;
}
}
// Class to represent a node
// of the linked list
class LinkedList {
constructor() {
this.head = null;
this.mid = null;
this.count = 0;
}
// Function to insert a node in
// the middle of the linked list
insertAtMiddle(n) {
var temp = new Node();
var temp1;
temp.next = null;
temp.value = n;
// If the number of elements
// already present are less than 2
if (this.count < 2) {
if (this.head == null) {
this.head = temp;
} else {
temp1 = this.head;
temp1.next = temp;
}
this.count++;
// mid points to first element
this.mid = this.head;
}
// If the number of elements already present
// are greater than 2
else {
temp.next = this.mid.next;
this.mid.next = temp;
this.count++;
// If number of elements after insertion
// are odd
if (this.count % 2 != 0) {
// mid points to the newly
// inserted node
this.mid = this.mid.next;
}
}
}
// Function to print the nodes
// of the linked list
show() {
var temp;
temp = this.head;
// Initializing temp to head
// Iterating and printing till
// The end of linked list
// That is, till temp is null
while (temp != null) {
document.write(temp.value + " -> ");
temp = temp.next;
}
document.write("null");
document.write("<br>");
}
}
// Driver code
// Elements to be inserted one after another
var arr = [1, 2, 3, 4, 5];
var n = arr.length;
var L1 = new LinkedList();
// Insert the elements
for (var i = 0; i < n; i++) L1.insertAtMiddle(arr[i]);
// Print the nodes of the linked list
L1.show();
</script>
Output: 1 -> 3 -> 5 -> 4 -> 2 -> NULL

Time Complexity : O(N)
Auxiliary Space: O(1)




Article Tags :
Data Structures
Linked List
Mathematical
Practice Tags :
Data Structures
Linked List
Mathematical
Read Full Article

Singly Linked List vs Doubly Linked List

Before looking at the differences between the singly linked list and doubly linked list, we first understand what is singly linked list and doubly linked list separately.

Video liên quan

Postingan terbaru

LIHAT SEMUA